Manual

Transistor-Servo-Drive

for

DC-Servo-Motors

Hans-Paul-Kaysser-Strasse 1

D-71397 Leutenbach 3 - Nellmersbach
Tel.: 07195/9283-0
Fax 07195/928329

Content

1 Basical Information
Safety Advice
Page
General Information 4
Application 5
Characteristics 6
Technical Data 7
2 Mechanical Installation
Dimensions 8,9
Structure of Device 10
Mounting Advice 11
3 Electrical Installation
Connection Overview 12
Connection PLan 13
Earthingplan , Emc Advice 14
Mains Connection 15,16
Motor Connection 17
Control Connection 18 to 22
Signals 23,24
Connector Pinning 25
4 Device Overview
Component Overview 26
Block Diagram 27
Front Panel 28
Adjustment Functions, Indications 29
5 Adjustment
Adjustment Advice 30
Nominal Value 31
Actual Value 32
Current limitation 33
Speed Controller 34 to 36
6 Getting Started
Default Setup 37
7 Guarantee 39

Safety Advice

Electronic devices allways involve the risk of failure.

Caution High Voltage
 AC 230V~, DC 400V=

This manual has to be read carefully and must be understood by experts before installing the device.
If there are any doubts call your trader or the manufacturer.
The TVQ6 series is designed to regulate electrical currents;
protection standard IPOO.

Standards and Guidelines:

The device and it's associated components can only be installed and switched on where the local laws and technical standards have been strictly adhered to:

EU-Guidelines	89/392/EWG, 84/528/EWG, 86/663/EWG, 72/23/EWG
	EN60204, EN50178, EN60439-1, EN60146, EN61800-3
- IEC/UL	IEC364, IEC 664, UL508C, UL840
- VDE-regulations	VDE100, VDE110, VDE160

- TÜV-regulations
- Regulations of Professional and Occupational bodies: VGB4

The user has to assure that:

- after a failure of the device
- an incorrect handling,
- after a breakdown of the control unit etc.
the drive has to be brought to a secure operating condition.
Machines and installations are to be provided with supervisory and safety equipment, that is indepentent of the device.

Adjustment

- only by qualified personnel
- adher to safety regulations

Installation work

- only when disconnected from all power lines

QS
The devices are archived by the manufacturer with their serial number.

CE

The EU-guide line 89/336/EWG with the Regulations EN61000-2 and EN61000-4 are observed.

General Information

The transistor servo amplifier TVQ6 forms together with the brushless direct current motor a propulsion unit distinguished by its high control performance. Using a DC-motor the current is propotional to the torque and the voltage is propotional to the speed.
Current and speed are measured precisely.
The analoque regulation circuits of the servoamplifier are designed simply.
The speed actual value is generated from the tachogenerator or the armature voltage.
In the speed controller (P-I-controller) of the servo-drive is the differenz of nominal value and actual value amplified.
The result is the current nominal value.
As occurs in all DC-, AC or ec-servo-amplifiers which are supplied by the dc-bus, when braking the feed-back of the energy in the dc-bus must be observed. (winding machines, lifts, great centrifugal masses)
The ballast circuit is set for 3% on-period, higher duty circles can reached by mounting external resistors (Option).

Information:

Further servo amplifiers for DC-servo motores

for low power	UNITEK series SERVO-TV3\&TV6, 24-120V, 6-12A
	UNITEK series TVQ6.2
for higher power	UNITEK series Classic Q2, Q6
	up to $250 \mathrm{~V}, 15-60 \mathrm{~A}$

Motor controller for DC-shuntwoound motors
from midrange to highest
Power
UNITEK series Classic Q1, Q3
up to 550V, 15-2000A
3-phase servo amplifiers for AC-synchro servo motors
for low power UNITEK series SERVO-TVD3-2 -xx-bl, IN, RS 24-15V, 5-10A
for midrange power UNITEK series SERVO-TVD6-2 -bl, IN, RS 200 V and 400V, 5-25/40A
for high power
for Battery-operation
UNITEK series AS 250bl, AS 450RS
UNITEK series DS 400
UNITEK series BAMO

Application

for all kinds of machines up to 4 KW drive power especially as 4 Q -servodrive in travel axes with

- high dynamic acceleration and deceleration cycles
- great regulation range
- high efficiency
- small motor size
- even and smooth travel
for speed or torque regulation or
combined speed-torque regulation with or without superposed position controller.
drives with constand speed as in conveyors, lead screw drives, pumps or divider units.

For use in :

componenet insertation machines, metall-sheet working machines, machine tools, plastic working machines, assembly machines, knitting and sewing machines, textile working machines, grinding machines wood and stone working machines, food processing machines, robots and manipulators, storage across machines, extruder, calander and many other machines and installations .

Notice:

In drives which mainly require deceleration For example:
-> ing machines, lifts, great centrifugal masses.
The braking energy will be annihilated in the ballast circuit or re-feeded to the mains using an external d.c.-to -a.c. inverter.

With several axes an energy compensation is possible.

Construction

Cubicle-mount compact device or 6HE-plug-in unit According to the VDE- DINand EU- regulations.
Standard analog regulation electronics.
Power section for 10A, 16A and 25A.
Wide-band chopper supply unit for the auxiliary voltages.
Power supply unit on the back panel circuit board .
Galvanic isolation between:

- Power section and Case
- Power section and regulation electronics
- Regulation electronics and logical inputs

The leakage distances are according to the CE regulations.

There are used:

- Fully isolated six-pack IGBT-power semiconductors,generous dimensioning.
- Only industrial standard components are used
- All ICs with external connections are mouted on high-quality sockets
- LED displays
- 16 digit binary switches for PI-setup of the speed regulator
- Precision trimmers for fine adjustment
- Plug-in jumpers for system setup.

Characteristics:

* Direct power supply 230V~
* Electronic starting current limitation
* 2 differential reference inputs
* Accelleration and decelleration ramp with second nominal value
* \quad Speed and torque regulation
* Static and dynamic current limit
* Current nominal value output
* Test connectors for current and speed
* Logical in- and outputs with optocouplers
* Enable and end-switch logic
* Integral disabling
* Quick stop
* Mains failure braking
* Temperature control for motor and device
* Parameter adjustments without soldering
* 10 pin control connector

Power Connection

Direct to the mains
With autotransformer
max. $1 \times 230 \mathrm{~V} \sim \pm 10 \%$
max. $3 \times 230 \mathrm{~V} \sim \pm 10 \%$

Option: mains voltage 60 up to 180V~ adjustment by manufacturer required Specify mains voltage when ordering!

Data: TVQ6-250-		10	16	25
Output voltage	V=	250	250	250
Output-standstill current	Steady	A=	10	16
	Peek	A=	20	32
Maximum electric power.	W	2000	3200	40
Fast fuses built in	A	20	20	2000
Dimensions Plug-in-uni	WxH	16 TE	16 TE	24 TE 6HE
Cooling	60% ED $100 \% E D$	convect fan	convect fan	fan fan
Switch cabinet mounting	WxHxD	see dimensions page 9 to 11		

Common specifications:

Protection standard
Device layout
Humidity stress
Operation altitude
Operation range
Extented operation range
Bearing range
Speed controller
control precision (excl. act.value error)
Control range
Nominal value inputs
Logical inputs
Logical outputs

IP 00
VDE 0100 group C
VDE 0160
class F according to DIN 40040
<1000m above NN
0 ... $45<^{\circ} \mathrm{C}$ (with external fan $0 \ldots 35^{\circ} \mathrm{C}$)
up $1060^{\circ} \mathrm{C}$ red. $2 \% /{ }^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$
$\pm 0.1 \%$
>1:1000
$\pm 10 \mathrm{~V}=$
$>+10 \ldots+30 \mathrm{~V}=$
$>+14 \mathrm{~V}, 6 \mathrm{~mA}$

Fan with 100% on period
use external fan
charing circuit must be bridged
Current controller with PI-switching
external ballast resistor $>300 \Omega, 600 \Omega$

Caution:

When order please specify:
Notice duty cycle
Several axes with 16A rated current
in one rack.
Mains voltage < 180V~
Exact torque regulation
Great centrifugal mass

TVQ6. 2

2 Mechanical Installation

Multi axes combination

Dimensions 6HE (mm)

Dimensions	plug-in units				
	1	2	3	4	5
A	$1 \times E+3$	$2 x E+3$	$3 x E+3$	$4 x E+3$	$5 x E+3$
B	$1 x E+40$	$2 x E+40$	$3 x E+40$	$4 x E+40$	$5 x E+40$
C	$1 x E+55$	$2 x E+55$	$3 x E+55$	$4 x E+55$	$5 x E+55$

Unit-grid dimension

Rated current	$<=16 \mathrm{~A}$	$\mathrm{E}=81.28 \mathrm{~mm}$
Rated current	25 A	$\mathrm{E}=121.92 \mathrm{~mm}$

Mounting height 255 mm

Power supply unit back panel with plug-in-device (without rack)

Rack

Hight units
: 6HE
Wide units 10,16A device : 16TE
Wide units 25Adevice : 24TE
Mixed 6HE, 3HE racks on request

2 Mechanical Installation

Mounting dimensions (mm)
Compact device

Current	A	B	C	D	E	thread
10,16 A	95	335				M4
$25-\mathrm{w}$	135	335				M4
$25-$ sw	180		158	190.5	55	M5

Multi-axes combination

	A	C	D	E	thread
Wall mounting	$n \times E+60$	$n x E+40$	190.5	55	M5

Rated current $=10,16 \mathrm{~A} \quad \mathrm{E}=81.28 \mathrm{~mm} \quad \mathrm{n}=$ number of plug-in units Rated current $=25 \mathrm{~A} \quad \mathrm{E}=121.92 \mathrm{~mm}$

TVQ6. 2

connected to
switch-cabinet GND

3 Elektrical Installation

The devices are according to EU-regulation 89/336/EWG, the standards EN 50081-2 and prEN 50082-2 will be observed under the following conditions.

Device, transformer, motor chokes and mains filter fixed on a $500 \times 500 \times 2 \mathrm{~mm}$ mounting board.
Mounting board and motor frame connected to gnd with a $10 \mathrm{~mm}^{2}$ wire. Devices reference X1:13 connected to mounting board with a $2.5 \mathrm{~mm}^{2}$ wire. Device-PE-screw connected to mounting board with a 50 mm long $4 \mathrm{~mm}^{2}$ line.

Single-phase power supply:

mains filter Type :
linelength device - mains filter
Three-phase power supply:
mains filter Type:
linelength transformer - mains filter linelength device - mains filter

Motor connection:

motor chokes Type :

$$
\begin{aligned}
& \text { up to } 16 \mathrm{~A}=\mathrm{FEl}-16 \\
& <100 \mathrm{~mm}
\end{aligned}
$$

up to 16A = FE3-16
up to 25A $=$ FE3-25
<500mm
$<100 \mathrm{~mm}$

$$
10 A=M D 78-10
$$

$$
16 A=M D 84-20
$$

$$
5 A=\text { MD84-30 }
$$

motor line 1,5m long, 4core shielded. Shielding on device side fixed to mounting board and on motor side flächig connected to PE.

Contol lines supply:

All lines shielded $<1.5 \mathrm{~m}$. Shielding fixed to PE

3 Elektrical Installation

Connetion Advice

Caution:

The connection advice concerning the individual attachments of the connections to the plug numbers or terminals are binding.
All further advices to this are not binding.
The input and output lines can be altered or completed in consideration of the electrical regulations.

Notice:

- connection advice and operation advice
- local technical regulations
- EU-machine regulation 89/392/EWG

Input filters:

(See EMC advices on page 14)
short line length between input filter and device or shielded line.

Parasitic current switch

- Bauart nach DIN VDE 0664
- tripping current > 200mA
- only combined with other safety precaution

Connection to 230 V~Mains

2-phase connection 1x 230V~

compact device up to 10A.
multi axis combination up to 20A
3-phase connection $3 \times 230 \mathrm{~V}$ ~
with >10 A (multi axis combination $>20 \mathrm{~A}$) necessary

Connection lines, Fuses Dimensioning		10A	16A	25A	max. 30A
Cross section	mm^{2}	0.75	1.5	2.5	2.5
Fusing blow-out fuse	AF	10	16	25	30
automatic circuit braker	A	10	16	25	25

electronical starting current limitation to 7A~

Connection to 400V~Netz

2-phase or 3-phase connection
Auto- or isolationtransformer
One transformer for serveral devices

Notice:

- rate contactor according to transformer inrush current.
- time-lag fuses before transformer
- fuse value according to transformer current
- fast fuses after transformer
- fuse value per powersupply unit max. 30AF

Transformer power (Example):

Primay voltage 400V~
Secondary voltage 230V~

Autotransformer

Transformer rated current $[V A]=0.6 \times 230 \times I M \times G L F \times n F$

Isolationtransformer

Transformer rated current $[\mathrm{VA}]=1.42 \times 230 \times \mathrm{IM} \times \mathrm{GLF} \times \mathrm{nF}$

IM	$=$ sum of motor currents	
GLF	$=$ coincidence factor	
nF	$=$ speed ratio- factor	
$\mathrm{GLF}=$		$\mathrm{nF}=$
1	with 1 motor	effective speed
$0.5 \ldots 0.7$	with 2 motors	maximum speed
$0.4 \ldots 0.6$	more than 2 motoren	

2-phase-voltage

3-phase-voltage

3 Elektrical Installation

Motor Power connection

Line number
PE
M1 M2
M3
Connection X3
X3:6 X3:7 X3:8
X3:9
$\mathrm{X} 3: 6$ is internally connected with the devices PE-bolt.
motor line at
Cross section
kind of cable
10A 16A
25A
thermo
brake
$\begin{array}{lll}1.5 & 1.5 & 2.5\end{array}$
0.75
0.75
$3 x$ motor line shielded + PE + (if required: $2 x$ thermo $+2 x$ brake)

Shielding with earth clamp

connected directly with the entry of the switch cabinet and the motor earth manifold
If there long lines earth several times

Ferrit cores

- against HF-disturbance

Motor Chockes

- against LF-disturbance
- against high discharge current
- for high efficiency of the motor
- for the duration of the motors life

External ballast resistor

dimensioning:
average of the brake power per axis

$$
\text { Pbrake }[W]=\frac{1 \times J g \times n^{2}}{2}-\frac{\mathrm{Jg}^{2} \times a \times n}{M_{M}} \times f
$$

Jg	$=$	motor- and effective load torque	$\left[\mathrm{kgm}^{2}\right]$
n	$=$	maximum speed	$\left[\mathrm{s}^{1}\right]$
$\mathrm{M} M$	$=$	maximaum motor torque	$[\mathrm{Nm}]$
a	$=$	deceleration	$\left[\mathrm{N}^{-2}\right]$
f	$=$	repeating frequency of the braking	$\left[\mathrm{s}^{-1}\right]$

To change on back panel power supply unit:

- remove solding bridge D

Notice:

External ballast resistor >>> minimum resistance 20
Internal ballast resistor
$27 \mathrm{~W} / 50 \Omega$, at 3% on-period $=1.5 \mathrm{~kW}$

Control Connections

The connecting advices are for general information and without obligation

Notice:

- Connecting- and operating instructions
- Local regulations
- EU-machine regulation

Connector numbers

Clamp connectors $\mathrm{X1}: 1$ up to $\mathrm{X} 1: 16$ and X 2 : 17 up to $\mathrm{X} 2: 32$

Signal lines

shielded and seperated from power lines
nominal value lines paired twisted and shielded

Logical connections

Relay with golden pins or reed relay. Maximum currency on contact 6 mA .

Internal Logical voltage 15V=

- not galvanic isolated
- with relay control
- Jumper J1 and J3 plugged

External logical voltage

- galvanic isolated
- Used with SPS or CNC
- UEXT +15 bis $30 \mathrm{~V}=\quad$ at clamp X2:27
- GNDE at clamp X1:11
- Jumper J1 and J3 unplugged
- residual ripple of the logical voltage<20\%

Default setup: Jumper J1 and J3 plugged.

Inputs and outputs with optocoupler

3 Elektrical Installation

Enable

Enable >> aktive with positive voltage
Jumper SW1 position 2-3
(default setup)
Enable - relay contact

- internal logical voltage
- contact chain between
$\mathrm{Xl}: 1 \quad+15 \mathrm{~V} / 10 \mathrm{~mA}$
Enable -external Logical voltage
- Enable voltage
$\mathrm{XI}: 2+10 \ldots+30 \mathrm{~V}$

Enable >> aktive at zero point

Jumper SW1 Position 1-2
Enable - relay contact

- Logic-zero point
(US-version)
- Contact chain between

X1:11
Enable -external logical voltage

- Enable voltage

X1:2 and X1:11
X1:2 OV

Switching on enable

- Nominal value and speed controoler are relaised at once
- LED D1B bright

Switching off enable

```
Jumper J2 plugged (quick stop)
(default setup)
```

- nominal value is internally and immediately set to zero (deceleration)
- LED D1B dark.
- after 5 seconds >> speed controller locked.

Jumper J2 unplugged (free running down)

- Speed controller locked at once.
- LED D1B dark.

Notice:
Jumper SW1 Pos: 2-3> enable aktive at $>+10 \mathrm{~V}$ (default setup)
Pos: $1-2>$ enable aktive at zero point
Jumper J2 plugged $>$ quick stop (default setup)
Unplugged > free running down

Limit Switches

Limit switch inputs

Enable for

- positive nom. value direction

LED 1D >> contact between X2:27 and X1:16

- negative nom. value direction

LED $1 \mathrm{H} \gg$ contact between $\times 2: 27$ and $\mathrm{X} 2: 32$

Limit switch functions

Contact

Closed
open

Function

enable>LED bright direction locked
limit switch is occupied >> contact offen >> drive decelerates

Changing nominal value direction

- drive moves from limit switch
- limit switch cleared >> contact closed

Caution:

Without limit switch >> connection between X2:27, X2:32 and X1:16

Integral switching off

Function - relay contact
Contact Speed controller
open P-Iregulation
Closed
P-regulation

Function - external logical voltage

Voltage X2:31 Speed controller
<2V P-I regulation
>10V $\quad \mathrm{P}$-regulation

Caution:

Notice optimization advices.

Mains failure Braking

braking function

- at mains failure nominal value is set immediately to zero
- Phases monitoring switched off (Jumper Jl on back panel)
generatoric rear feed into the intermediate circuit.

3 Elektrical Installation

Speed nominal value
voltage source for nominal values $\pm 10 \mathrm{~V}, 10 \mathrm{~mA}$
+10V X1:3
-10V X1:5
GND $\quad \mathrm{Xl}: 8$
If the internal voltage source is used >> Jumper $\$ 11$, S 12 plugged

Nominal value inputs

- Maximum nomial value voltage $\pm 10 \mathrm{~V}=$
- Input resistance $50 \mathrm{k} \Omega$
- Relay contacts: gold or reed contacts

Nominal value lines paired twisted and shielded. Shield connection on one side

Connetion

Nom.value Connection Jumper Function Measuring point
nom.value 1
nom.value 2

Connection	Jumper	Function	Measuring point
X1:4 (Signal)		direct	X4:1
X1:8 (GND)			X4:10
X2:17(Signal)	SW2 1-2	direct	X4:2
X2:28 (GND)	SW2 2-3	ramp	X4:2
			X4:10

Jumper positions

Function	Jumper	Position	default setup
Nominal value 1			
Differential input	S12	unplugged	
Using internal voltage source	S12	plugged	***
Sollwert 2			
Differential input	S11	unplugged	
Using internal voltage source	S11	plugged	***
With ramp (integrator)	SW2	plugged in pos. 2-3	***
Without ramp	SW3	plugged in pos. 1-2	
Without nom. value 2	SW2	unplugged	

Resisistor for nominal value current $0 \ldots \pm 20 \mathrm{~mA}$
Nominal Value 2 R4 500Ω
internal supply CNC/SPS
nom.value current

External current limittation

Voltage source for external current limit

$$
+10 \mathrm{~V} / 10 \mathrm{~mA} \quad \times 1: 3
$$

Control range:

$0 \ldots+5 \mathrm{~V} \quad \ggg 0$ up to 100% rated current $0 \ldots+10 \mathrm{~V} \quad \ggg 0$ up to 200% rated current Internal overcurrent control >>> max. 5sec.

Inputs

Maximum input voltage +10 V
Input resistance $10 \mathrm{k} \Omega$
Internal attenuativon with potentiometer Imaxı, Imax2
Relay contacts: gold or reed contacts

Connection

Current limit	connection	jumper	measuring point
Positive	X1:9 (signal)	S19 unplugged	$\times 4: 3$
	X1:7 (GND)		X4:10
	X1:10 (signal)	S20 unplugged	$\times 4: 3$
Negative	X1:7 (GND)		X10

Internal supply

CNC/SPS

nominal value

Caution:

With internal current limit adjustment >>> jumper S19, S20 plugged.

3 Elektrical Installation

Ready for Operation Signal BTB

Relay

Signal contact
Contact values
X2:21-X2:22
max. 48V, 0.5A

The ready for operation signal (BTB) shows the control (CNC/SPS) that the drive is in working order.
Connect BTB-signals of several axes in series.
delay after switching on the mains >> max. 1 sec .

Indication

Ready for Operation Error

LED DIA bright
LED DIA dark
contact closed contact open

Ready for operation turns off with

Individual fault
actual value error
Overtemperature
Short, line-to-earth fault
Voltage error
Buffer error

BTB-LED DIA dark dark dark dark dark

Individual fault- LED
LED D2H bright
LED D2G bright
LED D2F bright
LED D2B bright
LED D2A bright

Caution:

In any case use BTB-contact with CNC/SPS -Control!

Analogue measuring outputs

Function	Motor current	Speed
Connection	$\mathrm{X} 2: 20-\times 2: 24$	$\mathrm{X1:6-} \mathrm{\times 1:7}$
Measuring value before	$2.5 \mathrm{~V}=$ rated current	tachometer voltage attenuator
	$5 \mathrm{~V}=$ peek current	
Output resistance	unipolar positive	bipolar
	$1 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$

Signal outputs

logical outputs with opto-coupler

- wire break securebei in case of error output is locked
- Output voltage
- Output current
- Output resistance
$10 \ldots 30 \mathrm{~V}=$
5 mA
$1 \mathrm{k} \Omega$

Overview of signal outputs

Signal	Function	Output	Indication	stored
Buffer	power supply error	$\times 1: 14$	LED 2A	yes
Overload	blocked	$\times 2: 18$	LED 1F	no
Standstill	Speed $<1 \%$	$\times 2: 25$	LED 1E	no
Overtemperature motor $>150^{\circ} \mathrm{C}$				
	heat sink $>75^{\circ} \mathrm{C}$	$\times 2: 26$	-	no
	heat sink $80^{\circ} \mathrm{C}$	X2:26	-	no
			LED 2G	yes

Warning
motor, heat sink too hot

X2:19 -
no
Reference earth GND
X2:23

memory reset:

Enable	Off-On	Jumper S6 plugged (default setup)
Mains	Off-On	Jumper S6 unplugged

P2:18

Control Connections Function

+ 15 Volt (for enable)
Enable-Input (+10 ... +30 Volt)
+10 Volt (for nominal value)
Nominal value 1 - input +(Signal)
- 10 Volt (for nominal value)

DC-tacho - input (Signal)
DC-tacho - input (AGND)
Nominal value 1 - input -(AGND)
External current limit I_{1}
External current limitl2
External GNDE
-15V (ext. electronic)
Device ground GND
Buffer error
Amplification 1:1
Limit switch -
Nominal value 2 - input +(Signal)
Signal Overload
Signal temperature or tachometer error
Current (list)
Ready for operation
Ready for operation
Device ground GND (Earth)
Analogue-device ground(AGND)
Signal standstill
Overtemperature
external voltage UEXT
Nominal value 2 input -(AGND)
Current nominal value
+15 V (external electronic)
Integral component interlock
Limit switch +

Power connections X3

Function

External ballast resistor
DC Buffer
Mains L1 230V~
Mains L2 230V~
Mains L3 230V~
Earth PE
Motor 1
Motor 2

Clamp-Number
X1: 1
X1: 2
X1:3
X1: 4
X1:5
X1: 6
X1: 7
X1: 8
X1:9
$\mathrm{X}: 10$
X1: 11
$\mathrm{X}: 12$
X1: 13
XI: 14
X1: 15
$\mathrm{X}: 16$
X2: 17
X2: 18
X2: 19
X2: 20
X2: 21
X2: 22
X2: 23
X2: 24
X2: 25
X2: 26
X2: 27
X2: 28
X2: 29
X2: 30
X2: 31
X2: 32

Clamp-Number
X3:1
X3:2
X3:3
X3:4
X3:5
X3:6
X3:7
X3:8

Pin-Number
(internal)
X11:32c
X11:30c
X11:28c
X11:26c
X11:24c
X11:22c
X11: 20c
X11:18c
X11:16c
X11:14c
X11:12c
X11:10c
X11:8c
X11: 6c
X11:4c
X11:2c
X11:32a
X11:30a
X11:28a
X11:26a
X11: 24a
X11:22a
X11:20a
X11:18a
X11:16a
X11: 14a
X11: 12a
X11:10a
X11:8a
X11: 6a
X11:4a
X11: 2a

Pin-Number
X31: 18,20 abc
X31: 14,16 abc
X31: $10,12 \mathrm{abc}$
X31: 6,8 abc
X31: 2,4 abc
X31: 22,24 abe
x31:26,28 abe

Control Connector X4 (front panel)

1st speed nominal value behind differential amplifier
2nd speed nominal value behind differential amplifier or integrator
Current nominal value
+10 Volt

- 10 Volt

Current actual value
Speed actual value (behind attenuator)
Enable
Device ground GND

X4: 1
X4: 2
X4: 3
X4: 4
X4: 5
X4: 6
X4: 7
X4: 8
X4: 9, 10
мә!^əə^О łиәuodmoう

4 Device Overview

TVQ6. 2

[^0]
Adjustment functions

Function	Poti
Actual value balancing-DC-Tacho	
	nmax
Internal current limit	Imax1
	Imax2
External current limit	Imax
	Imax2
Steady current	ID
Integrator	
Amplification P-Component	
Amplification I-Component Zero point adjustment	Xp
	Offset

Switch S9	Jumper	Component switch S9 trimmer P4
	S19, S20	S19
	S20	trimmer P5 trimmer P6 trimmer P5
		trimmer P6 trimmer P7
S4	SW2 (2-3)	trimmer P2 switch S4 S5
		trimmer P3 switch S5 trimmer P8

unplugged
differential input
differential input
2-3,off=1-2 plugged
no differentiation
no smoothing
external current limit 2
external current limit 1
Amplification > 1000
ext-int separated
ext-int separated
free running down
mains-reset
2-3, negative=1-2 plugged
temperature circuit breaking
Jumper-Number
S 12
S 11
SW2 2-3/1-2
S 14
S 3
S 19
S 20
S 2
J 1
J 3
J 2
S 6
SW1 2-3/1-2 S 18

LED- Indications

Function
 Control electronics

Limit switch +
Limit switch -
Blocked
Standstill
Speed controller output -
Speed controller output +
Enable nominal value
Ready for operation

Power section

Actual value error
Temperature
Short detection
Rotorlage R3
Rotorlage R2
Rotorlage R1
Voltage error
Buffer error

stored	ACTUAL VALUE
choosable	TEMP
stored	SHORT CIRCUIT
no function	R3
no function	R2
no function	R1
stored	± 15
not stored	DC-LINK

LED-Number
LED D1x
LED H
LED G
LED F
LED E
LED D
LED C
LED B
LED A

LED D2x
LED H
LED G
LED F
LED E
LED D
LED C
LED B
LED A

Adjustment Advice adjustments

- only by qualified personnel
- adhered to safety regulations
- notice adjusting sequence

Presettings

Actual value
Nominal value inputs
logical inputs/outputs
P-I parameter switch

Optimization

Actual value balancing
Current controller
Current limits
Speed controller
Slope limitation
Zero point
Path- and position controller
$\mathrm{n}_{\text {max }}$ adjustment
adjusted by manufacturer (P- or
Pl-controller)
$I_{\text {max }}, I_{D}$-adjustment
P-I-Switch, X_{P}-Adjustment
INT-Adjustment (only nom. value 2)
Offset-Adjustment
in CNC/SPS - Control

Caution:

control systems have to be optimized from inside to outside.
sequence: current controller >> torque controller >> position controller (CNC/SPS)

Measuring values

Control connector X4

Measuring values

Nom.value 1 after input amplifier
Nom.value 2 after input amplifier
Current nom. value (speed controller)
Current actual value unipolar torque actual value after divider
max. value measuring point
$\pm 10 \mathrm{~V} \quad \times 4: 1$
$\pm 10 \mathrm{~V} \quad \times 4: 2$
$\pm 10 \mathrm{~V} \quad \times 4: 3$
$+5 \mathrm{~V} \quad \mathrm{X} 4: 6$
$\pm 5 \mathrm{~V} \quad \mathrm{X}: 7$

Nominal Value

Function
Input amplification
Input voltage
Differential input
Input in relation to GND Jumper
Input Signal
Input GND
Measuring on control connector Measuring value Integrator function

Input in relation to GND

with nominal value trimmer
with internal supply voltage
Jumper S11, S 12 plugged
Notice GND-connection
nom.value 1
1
$\pm 10 \mathrm{~V}=$
S12 unplugged
S12 plugged
X1:4
X1:8
X4:1
$\pm 10 \mathrm{~V}=$ not available
nom.value 2
1
$\pm 10 \mathrm{~V}=$
S11 unplugged
S11 plugged
X2:17
X2:28
X4:2
$\pm 10 \mathrm{~V}=$
Jumper SW2

Differential input

with nominal value of SPS/CNC
foreign external voltage
Jumper S 11, S 12 unplugged
Signal- and GND-connection exchangeable Default Setup

Both nomimal values connected:

- 1st and 2nd nominal value are added internally
- notice signs
- sum of nominal values not over $\pm 10 \mathrm{Volt}$.

Only with 2nd nominal value
-acceleration and deceleration-ramp linear integrator
Nom. value 2 Jumper trimmer range
without Integrator
with Integrator
Without nom. value2
SW2 Pos. 1-2
SW2 Pos. 2-3INT(P2) 0.1 up to 4.5 sec .
SW2 offen

Nominal Value Current

nominal value from external source 0 up to $\pm 20 \mathrm{~mA}$ internal compliance resistors for 0 up to max. $\pm 10 \mathrm{~V}$

Nom. value 1 resistor R121
Nom. value 2 resistor R4
resistance $[\Omega]$ = nominal value voltage / nominal value current (max. 500 $)$

Caution:

Do not use nominal value current from 4 up to 20 mA

Actual Value

Als Drehzahl-Istwert nur Gleichstomtachogeneratoren verwenden Use only DC-Tachodynamos to acquire the speed actual value Option: Incremental encoder with IN -evaluation

Coarse Adjustment
Switch 59
Adjustment Tacho - coarse balancing

Position	0	1	2	3	4	5	6	7	8	9 up to F	trimmer- position
Tachometer											
Voltage	∞	67	40	32	25	23	20	18	14	12 V	min. middle
		100	70	50	40	35	30	25	18		max.

Fine Adjustment
With trimmer $\mathrm{n}_{\text {max }}(\mathrm{P} 4)$
with nominal value from potentiometer:
with IV nominal value adjust to 10% maximum speed with 10 V nominal value fine adjust to 100%.

with nominal value from CNC/SPS:
with $0,8 \mathrm{~V}$ nominal value adjust to 10% maximum speed with 8 V nominal value fine adjust to 100%

Current limitation

| Peek current | Range: 0 up to 200% rated current
 reset time maximum 5 sec. | Poti P5/P6 |
| :--- | :--- | :--- | :--- |
| Steady current | Range: 5 up to 100% rated current | Poti P7 |

Internal resetting current limits

Current Limit Function Limit

Overload
Heat Sink
Motor
The lowest current limit is active!

Peek current

internal current limit (Default Setup)

Adjustment

Imax|
$1_{\text {max } 2}$

Jumper

S19 plugged
S20 plugged

Trimmer

$I_{\max 1}$ (P5)
$I_{\max 2}(P 6)$

external current limit

Adjustment Input

$I_{\max 1} \mathrm{Xl}: 9 \quad 0 . . .+10 \mathrm{~V}$

Jumper

$I_{\max 2} \quad$ X1:10 $0 \ldots+10 \mathrm{~V} \quad$ S20 unplugged

Trimmer

$I_{\text {max }}$ (P5)
$I_{\text {max } 2}(P 6)$
The external current limit can be internally reduced with the I Imax-trimmer.

Steady current

motor protection adjustment for both torque directions to motor rated current with trimmer lo (P6).

Measuring adjusted values:

- don't connect Motor
- predetermine nominal value and turn on/off enable
measuring value at connector X4:3 (5V=rated current)
Nominal value measuring value $I_{\max }(2 \mathrm{sec}$.$) measuring value \mathrm{I}_{\mathrm{D}}$
$+5 \mathrm{~V} \quad 0$ up to max. $10 \mathrm{~V} \quad 0.25$ up to max. 5 V
-5V 0 up to max. 10V 0.25 up to max. 5V

Current-actual values

measuring value at connector $\mathrm{X} 4: 6 \gg I_{\max }=0$ up to $+5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.12$ up to +2.5 V

Caution:

for exact torque regulation:

- Changing the current controller from P-to PI-regulation by the manufacturer
- specify when ordering

Speed controller switching

Adjustment with

- two 16-position binary switches S4, S5
- Amplification trimmer P3 (Xp)
- D-component with jumper

S14

- in case of replacing the device > take over adjustment values

Default Setup

Binary switches S4 and S5 in position 4

- amplification trimmer Xp is set to 50%
- no D-component, Jumper S 14 unplugged
- optimal for most drives.

Adjustment Proportional-component with binary switch S4
Switch S4

Position	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Resistance $\mathrm{K} \Omega$	1000	450	280	209	180	148	123	107	90	82	73	67	64	59	55	52

Adjustment Integral-component with binary switch S5

Switch S5

Position	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Capa- city $\mu \mathrm{F}$	0.01	0.02	0.03	0.04	0.08	0.09	0.1	0.11	0.11	0.12	0.13	0.14	0.18	0.19	0.2	0.21

Caution:

With the input INTAB (X2:31) the l-component can be switched off.

5 Adjustment

Proportional Amplification

Function binary switch S4
Function Potentiometer Xp

Proportional amplification $=\mathrm{Xp} \times \mathrm{Fxp}$

Adjustment with osciloscope

Adjust

- nom.value jump $\pm 0,5 \mathrm{~V}$
- Input INTAB X2:31 activated

Measuring value
nominal value
reply of the controller
current nominal value

Measuring point
X4:1
X4:3

Effect D-component

- nominal value -differentiation
- jumper S14 plugged

Caution:

In case of position control (CNC/SPS) Do not use D-component

Adjustment without measuring instruments

Connect Motor

Nominal Value	$=0$
Xp	$=50 \%$
Switch S4	$=$ position 4
Switch S5	$=$ position 4

Enable drive,
Turn trimmer Xp clockwise until the drive oscillates.

if there is no oscillation

- turn switch S4 back to a lower value
- adjust to oscillation with trimmer Xp
- turn the potentiometer Xp anti-clockwise until the oscillation fades out,
- turn potentiometer Xp two more positions anti-clockwise.

Adjust switch $\$ 5$ so, that the drive runs smoothly after about two oscillations when there was a nominal value jump off 50%.

Responce of the drive:

Amplification too low long wave oscillation $1 \ldots 0.1 \mathrm{~Hz}$
long overshoots
overshoots target position
amplification too high short wave oszillation 30 ... 200Hz vibrates >during acceleration vibrates >during deceleration and in position

Caution:

Operation with CNC/SPS - Contols

- ad maximum speed >>speed nominal value between 8 and 9 V .

6 Getting Started

Default Setup

Check connections before getting started!

- Mains connection
clamps X3:3, X3:4, X3:5 max. 230V~
- protective conductor
- Motor connection

PE-screw at case

- Motor-earth-connection
- Option
- external ballast resistor clamps X3:9 and X3:2

Notice Connection Advice on Page 12.

Basic Connection - Power connections

Protective earthing

Mains
Motor

1 x or $3 \times 230 \mathrm{~V}$ ~
$2 x$ Motorline + protective conductor + shielding

Basic Connection - Control connections

Enable
Nominal Value
Limit Switch
Tachometer Connection
contact between X1:1 and X1:2
signal X1:4, GND X1:8
limit switch to $\mathrm{X1}: 16$ and $\mathrm{X} 2: 32$
or bridge between $\mathrm{X} 2: 27$ and $\mathrm{X} 1: 16, \times 2: 32$
$2 x$ Tacholine + shielding to $\mathrm{X} 1: 6, \mathrm{X1:7}$

Default setup for first getting started

Switch
Switch
Switch
Potentiometer Potentiometer Potentiometer Potentiometer Potentiometer Potentiometer

Jumper

S4 P-amplification
S5 l-component
S9 tacho-attenuator
Imaxı peek current Imax2 peek current 10\% ID steady current 100% Xp Amplification INT integrator nmax speed

Position 4 Position 4 Position 4 10\% 50\%
anti-clockwise stop anti-clockwise stop
unplugged
S2, S14, S18
SW1 Pos.1-2
SW2 Pos.1-2

plugged

J1, J2, J3, J4
S3, S6, S11, S12, S 19, S20
SW1 Pos.2-3
SW2 Pos.2-3

Guarantee

UNITEK guarantee that the Device is free from material and production defects. Test results are recorded and archived with the serial number.
The Guarantee Time begins from the time the device is shipped, and lasts one year. Unitek undertakes no guarantee for devices which have been modified for special applications.

Defects, defective goods.

During the warranty period, UNITEK will, at its option, either repair or replace products that prove to be defective, this includes guaranteed functional attributes. UNITEK specifically disclaims the implied warranties or merchantability and fitness for a particular purpose. For warranty service or repair, this product must be returned to a service facility designated by UNITEK.
For products returned to UNITEK for warranty service, the Buyer shall prepay shipping charges to UNITEK and UNITEK shall pay shipping charges to return the product to the Buyer.
However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to UNITEK from another country.
The foregoing warranty shall not apply to defects resulting from:

* improper or inadequate repairs effected by the Buyer or a third party,
* non-observance of the manual which is included in the all
consignments,
* non-observance of the electrical standards and regulations
* improper maintenance
* acts of nature

All further claims on transformation, diminution and replacement of any kind of damage, especially damage, which does not affect the UNITEK device, cannot be considered. Follow-on damage within the machine or system, which may arise due to malfunction or defect in the device cannot be claimed.
This limitation does not affect the product liability laws as applied in the place of manufacture (i. e. Germany).

UNITEK reserves the right to change any information included in this MANUAL. All connection circuitry discribed is meant for general information purposes and is not mandatory.
The local legal regulations, and those of the Standards Authorities have to be adhered to. UNITEK does not assume any liability, expressively or inherently, for the information contained in this MANUAL, for the functioning of the device or its suitability for any specific application.

All rights are reserved.

Copying, modifying and translations lie outside UNITEK's liability and thus are not prohibited. UNITEK's products are not authorized for use as critical components in the life support devices or systems without express written approval.
The onus is on the reader to verifiy that the information here is current.

[^0]: IPued luod」

 $$
 \bigcap \begin{aligned}
 & \text { ACTUAL VALUE } \\
 & \text { TEMP }
 \end{aligned}
 $$

 > TEMP SHORT R3 R2 R1 $\pm \pm 15 \mathrm{~V}$ DC-Lin $-I_{\text {max }}$ $+I_{\text {max }}$
 SHERT CIRCUIT
 Unitek
 Industri: Elektronik G $\quad \mathrm{m}$ b H

 ## Indication LED 2x

 H Actual value error
 G Temperature- error
 F Short detection
 E Rotor position 3
 D Rotor position 2
 C Rotor position 1
 B Voltage- error
 A Buffer error

 ## Trimmer

 Current limit Imax -
 Current limit Imax ${ }^{+}$

 ## Control Conector X4

 1 nom.value 1 behind diff.-amplifier
 2 nom.value 2 behind Integrator
 3 Current-nominal value
 $4+10 V$
 $5-10 \mathrm{~V}$
 6 Current-actual value
 7 Speed-actual value
 8 Enable
 9 not coated
 10device ground GND

 ## Indication LED 1x

 Limit switch +
 Limit switch -
 Overload - blocked
 Standstill
 Current direction -
 Current direction+
 Enable
 Ready for operation

 ## Trimmer

 | ID | steady current limit |
 | :--- | :--- |
 | Xp | Amplification |
 | INT | Integration time |
 | nmax | Speed |
 | Offset | Zero point |

