
MANUAL

PC Benutzer Software

für Servo-Verstärker (DS, DPC) und Batterie-Motorregler (BAMOBIL-D, BAMOCAR)

Hans-Paul-Kaysser-Straße 1 71397 Leutenbach-Nellmersbach

Tel: 07195 / 92 83 - 0 contact@unitek.eu www.unitek.eu

Ausgabe / Version

2023 / V1

Inhaltsverzeichnis

1	Basis -	Information	5
		istorie eitere Bedienungsanleitungen für digitale Geräte von UniTek	
		lgemeines	
		cherheitshinweise	
	1.5 Be	etriebssystem	6
	1.6 Sc	oftware – Installation	7
2	NDrive	Darstellung	8
		Drive Darstellung – Übersicht	
		Drive Darstellung – Bedienelemente	
	2.2.1	Bedienelemente – Eingabe und Auswahl	11
3	Details	Menüleiste / Hilfe	12
	3.1 D	etails Menüleiste / Hilfe – Datei	12
	3.2 D	etails Menüleiste / Hilfe – Kommunikation	13
	3.3 D	etails Menüleiste / Hilfe – Hilfe	14
4	Komm	unikation mit NDrive	15
	4.1 Kd	ommunikation mit NDrive – Hardware	15
	4.2 Kd	ommunikation mit NDrive – Verbindung herstellen	16
	4.2.1	Verbindung herstellen – Seriell RS232	16
	4.2.2	Fehlerhafte Kommunikation – Seriell RS232	16
	4.2.3	Verbindung herstellen – CAN-Bus	17
	4.2.4	Fehlerhafte Kommunikation – CAN-Bus	17
	4.3 Fi	rmware Update	18
5	Speich	ern und Laden von Geräteparameter	19
	5.1 Sp	peichern und Laden im Servo (Eprom)	19
	5.1.1	Speichern im Servo (Eprom)	
	5.1.2	Laden aus dem Eprom	19
	5.2 Pa	arameter-Daten Speichern auf und Laden vom PC	
	5.2.1	Speichern von Parameter-Daten (.urf) auf dem PC	
	5.2.2	Laden von Parameter-Daten (.urf) vom PC	
	5.2.3	Offline-Bedienung von Parameter-Daten (.urf) auf dem PC	20
6	Basis S	tatusinformationen	21
	6.1 St	atusinformation – Drehzahl und Strom	21
		atusinformation – Eingänge und Ausgänge	
		atusinformation – Statusanzeige	
		atusinformation – Fehler	
		atusinformation – Warnungen	
_		atusinformation – Betriebs-Status-Anzeige am Servo	
7	_	oe	
		reigabe – Hardware Eingang RUN (FRG) (Enable)	
		eigabe – Sperre und Freigabe über Schnittstellen (CAN-Bus, RS232) cherheits-Eingang RFE (Drehfeld-Freigabe)	
	7.3 Si 7.3.1	Betrieb mit externen RFE Eingang	
	7.3.1	Betrieb ohne externen RFE Eingang	
	,		

8	Eins	tellungen	30
	8.1	Einstellungen – Motor	31
	8.2	Einstellungen – Feedback (Geber)	
	8.3	Einstellungen – 2. Feedback	35
	8.4	Einstellungen – Externe Bremse	37
	8.5	Einstellungen – Ballast-Schaltung	39
	8.6	Einstellungen – Überwachung Motortemperatur	40
	8.7	Einstellungen – Leistungsanschluss / Zwischenkreisüberwachung	
	8.7.		
	8.7.2	Zwischenkreisüberwachung bei Firmware < 478	43
	8.8	Einstellungen – Überwachung Endstufentemperatur	
	8.9	Einstellungen – Servo	
	8.10	Einstellungen – Servo / PWM Taktfrequenz	
	8.11	Einstellungen – Servo / Analoger Ausgang	
	8.12	Einstellungen – Servo / Sollwert Befehlsmodus	
	8.13	Einstellungen – Servo / Analoge Eingänge	
	8.14	Einstellungen – Speed / Lineare Rampenfunktion und Drehzahllimitierung	
	8.15	Einstellungen – BTB / RDY	
9	Kom	munikation (extern) mit Servo	55
	9.1	Kommunikation (extern) mit Servo – CAN-Bus	55
	9.2	Kommunikation (extern) mit Servo – RS232	
	9.2.	1 RS232 Baudrate ändern	56
	9.2.2	2 Struktur des seriellen RS232 Protokolls	56
10) Stro	mregelung	57
		Stromregelung – Parameter-Übersicht	
	10.1 10.1		
		Stromregelung – Strukturbild	
	10.2 10.2		
		·	
	10.2		
11	L Stro	mreduzierung (Derating)	65
	11.1	Stromreduzierung – Übersicht und Erläuterung	65
	11.1	1 Stromreduzierung – Übersicht	65
	11.1	.2 Stromreduzierung – Erläuterung	67
	11.1	3 Stromreduzierung – Statusanzeige	68
12) Drok	nzahlregelung	60
14			
	12.1	Drehzahlregelung – Parameter-Übersicht	
	12.1	C	
	12.1	i	
	12.1	5	
	12.2	Drehzahlregelung – Strukturbild	
	12.2	.1 Einstellung Drehzahlregler-Paramter (Kp ,Ti, TiM)	75
13	3 Dreh	nmomentregelung	78
	13.1	Drehmomentregelung – Paramter-Übersicht	
	13.2	Drehmomentregelung – Allgemein	
	13.3	Drehmomentregelung – Torque-Tempomat	
1/		tionsregelung	
		HUHAI CECIUHE	

1	.4.1	Positionsreglung – Parameter-Übersicht	
1	.4.2	Positionsreglung – Strukturbild	
	14.2	2.1 Positionsregler – Einstellungen	83
	14.2	2.2 Positionsregler – Zusatzinformation Einstellungen	84
	14.2	2.3 Positionsregelung – Umrechnung der Maßeinheiten für Position	85
	14.2	2.4 Positionsregelung – Skalierung Position	85
1	4.3	Positionsregelung – Referenzfahrt	86
	14.3	3.1 Positionsregelung – Referenzfahrt Strukturbild	86
	14.3	3.2 Positionsregler – Referenzfahrt Logikdiagramme	88
15	Feld	dschwächeregelung	91
	5.1	Feldschwächeregelung – Synchronmotor Allgemein	
	5.2	Feldschwächeregelung – Einstellung Parameter	
16	Freq	quenzumrichter Betrieb (ACI V/f)	
	.6.1	Frequenzumrichter – Einstellung Parameter der FU Kennlinie	
	.6.2	Frequenzumrichter – Einstellung Motor Parameter	
		ik	
1/	Logi		
	.7.1	Logik – Gesamtübersicht	
1	.7.2	Logik – Digitale Eingänge	
	17.2		
ء	17.2		
1		Logik – Digitale Ausgänge	
	17.3		
	17.3	3.2 Logik – Digitale Ausgänge Übersicht Konfiguration	100
18	Diag	gnose	102
1	8.1	Diagnose – Gesamtübersicht	102
1	8.2	Diagnose – Manual Read/Write	103
1	.8.3	Diagnose – Track	
	.8.4	Diagnose – Information	
1	.8.5	Diagnose – Zeige Register	104
19	Mor	nitor	105
1	9.1	Monitor – Gesamtübersicht	105
20	Auto	to (Sonderfunktionen)	106
2	0.1	Auto – Motor-Parameter	106
2	0.2	Auto – Sonderfunktionen	
	20.2	2.1 Sonderfunktionen – Übersicht	107
	20.2	2.2 Sonderfunktionen – [Fn1] Tuning - Still	108
	20.2	2.3 Sonderfunktionen – [Fn2] Tuning - Rotierend	108
	20.2	2.4 Sonderfunktionen – [Fn3] Phasing - Still	109
	20.2	2.5 Sonderfunktionen – [Fn4] Phasing - rotierend	110
	20.2		
	20.2		
	20.2		
	20.2		
		2.10 Sonderfunktionen – [Fn9] [Fn10] VdcBus Abgleich	
		rilloskop	
21			440

2	1.1	Oszi	lloskop – Gesammtübersicht	119
_	1.2		lloskop – Einstellungen und Anzeige	
_	21.2		Oszilloskop – Signal-Auswahl	
	21.2	2.2	Oszilloskop – Übersicht Trigger und Capture Einstellung	121
	21.2	2.3	Oszilloskop – Beschreibung der Trigger und Capture Einstellungen	121
	21.2	2.4	Oszilloskop – Messung Aktivieren	123
	21.2	2.5	Oszilloskop – Statusanzeige	123
	21.2	2.6	Oszilloskop – Zoom Optionen	123
	21.2	2.7	Oszilloskop – Liniendicke (Stift)	123
	21.2	2.8	Oszilloskop – Speichern und Laden von Messungen	124
	21.2	2.9	Oszillokop – Oszilloskop-Fenster Anpassen	124
	21.2	2.10	Oszillokop – Messwert-Anzeige	125
	21.2	2.11	Oszillokop – Parameter auf der Seite Oszilloskop	126
22	Test	betri	eb	127
2	2.1	Test	betrieb – Test	127
2	2.2	Test	betrieb – Stepgenerator	128
23	Mes	swer	te und Parameter	129
2	3.1	Mes	swerte (RO) – Übersicht	129
2	2 2		motor (PM / SD) Übersicht	122

1.1 Historie

Version	Änderung	Datum
2016 / V1.1	Fax-Nummer geändert / Seite 68 (lq – angepasst)	02.08.2016
2017 / V1	Error-List / Parameter	14.11.2017
2020 / V1	Komplette Überarbeitung	27.01.2020
2021 / V1	Anpassung an neues Überarbeitetes NDrive	01.03.2021
2022 / V1	Anpassung an auf Grund neuer NDrive Features und dem	01.08.2022
	neuen Firmware Release	
2023 / V1	Anpassung Fehlers- und Warnungs-Liste	28.03.2023
	Korrektur Rechtschreibe- und Darstellungsfehler	

Achtung:

NDrive 3 nur für Geräte ab Firmware FW-350 einsetzen (ab Seriennummer 70000).

1.2 Weitere Bedienungsanleitungen für digitale Geräte von UniTek

1.	MANUAL	DPC 4xx-AC DSxx, BAMO-D3, BAMOBIL-Dx	Hardwarebeschreibung
2.	MANUAL	DSxx, BAMO-D3, BAMOBL-Dx	Inbetriebnahme
3.	MANUAL	CAN	BUS-System

Zur Projektierung, Installation und Inbetriebnahme alle MANUALs benutzen!

Online: www.unitek.eu

Das MANUAL enthält Warn- und Sicherheitshinweise, Erklärungen zu Normen, mechanische und elektrische Installationshinweise.

Das MANUAL muss für alle mit dem Gerät beschäftigten Personen zugänglich gemacht werden.

Seite: 5

Kurzzeichen / Begriffe

Servo Digitaler UNITEK Motorregler Gerät Digitaler UNITEK Motorregler

1.3 Allgemeines

Die PC-Benutzer-Software NDrive dient der Einstellung und Optimierung der digitalen Servo-Verstärker (DS, DPC) und Motorregler (BAMO-D, BAMOBIL-D, BAMOCAR-D) von UniTek.

Es werden Grundkenntnisse in der Bedienung eines PCs und dem Betriebssystem WINDOWS vorausgesetzt. Die Software NDrive und das MANUAL sind über das Internet verfügbar.

1.4 Sicherheitshinweise

Mit der Software NDrive werden die Parameter und Einstellungen vom Servo und Motor vorgewählt.

Die Betriebsparameter können voreingestellt und während des Betriebs verändert werden.

PC und die PC-Programme sind nicht funktionssicher.

Der Anwender muss sicherstellen, dass bei einer Störung keine Gefahr für Mensch und Maschine auftreten kann und der Antrieb stillgesetzt wird.

Abgespeicherte Datensätze können durch Dritte verändert werden. Nach Einlesen eines Datensatzes ist dieser vor der Wiederverwendung zu prüfen.

Nur geschultes Fachpersonal mit Kenntnissen in Antriebstechnik, Regelungstechnik und PC Bedienung darf Einstellungen und Optimierungen am laufenden Antrieb vornehmen.

Die Sicherheitshinweise des verwendeten Verstärkers oder Motorreglers sind zusätzlich zu beachten. Ein von Sicherheitsbedingungen abweichender Betrieb ist unzulässig.

1.5 Betriebssystem

NDrive ist lauffähig mit Windows - 2000, - NT4, - XP, - Vista, - 7, - 8, - 10.

Mindestausstattung PC

Prozessor 80486 oder höher Grafik WINDOWS-kompatibel

Festplattenspeicher 10 MB Arbeitsspeicher minimal 8 MB

Schnittstelle COM1 bis COM8 (RS232, USB-Adapter)

Windows ist ein eingetragenes Warenzeichen der Microsoft Corp.

<u>Linux</u>

Die Verwendung von NDrive über eines der LINUX Betriebssysteme ist möglich mit Hilfe eines Windows Emulators (z.B. Wine).

1.6 **Software – Installation**

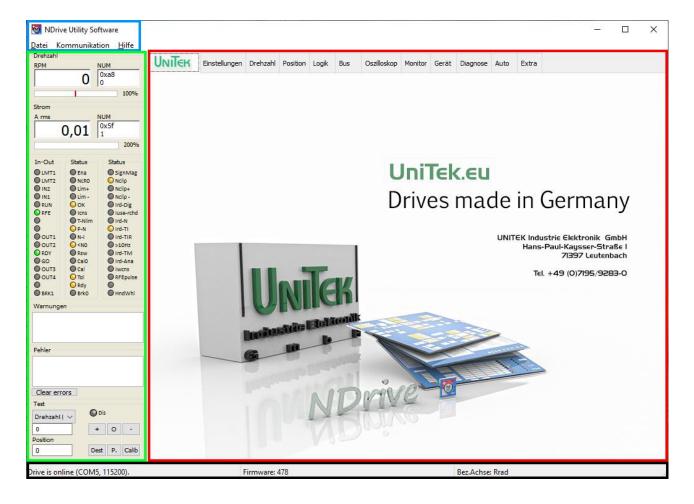
Die Benutzer-Software NDrive kann über die UniTek Homepage heruntergeladen werden.

Um NDrive auszuführen ist keine Installation notwendig. Es muss nur die (.exe) Anwendungsdatei ausgeführt werden.

Hinweis:

Da es sich bei NDrive nicht um eine kommerzielle Softwareanwendung handelt, muss in Windows die Auswahl von nicht vertrauenswürdiger Software einmalig akzeptiert werden.

Internet:


- Auf die UniTek Homepage https://www.unitek-industrie-elektronik.de/ gehen.
- Schaltfläche **Download** → **NDrive2-Software.zip** anklicken.
- Datei (NDrive2-Software.zip) herunterladen und abspeichern.
- Die Datei (NDrive2-Software.zip) entpacken.
- Programm NDrive starten über die Ausführung der (.exe) Anwendungsdatei.
- Es empfiehlt sich beim allerersten Start die Sprache einzustellen (Hilfe → Sprache wechseln...) und NDrive neu zu starten damit die Sprachdateien richtig geladen werden.

2 NDrive Darstellung

2.1 NDrive Darstellung – Übersicht

Die Bildschirmdarstellung von NDrive ist unterteilt in einer fest dargestellten Bildfläche und einer frei wählbaren Bildfläche.

NDrive Darstellung

Die fest dargestellt Bildfläche (blaue, grüne und schwarze Hervorhebung) bleibt immer bestehen und zeigt grundlegende wichtige Information an.

Diese ist in die folgenden Bereiche unterteilt:

Feste Bildfläche:	Beschreibung:
Kopfteil (blau)	TitelleisteMenüleiste
Linkes Feld (grün)	Drehzahl Drehzahlanzeige in Umdrehungen pro Minute (rpm) und 16 Bit Numerisch (Num) Balkenanzeige 0100 % Drehzahl
	Strom Stromanzeige in Arms und 16 Bit Numerisch (Num) Balkenanzeige 0200 % Nennstrom
	 In-Out Zustandsanzeige der digitalen Ein- und Ausgangspins: Grün: Eingang liegt an bzw. ist erkannt und Ausgang ist gesetzt Grau: Eingang liegt nicht an und Ausgang ist nicht gesetzt
	Status Generelle Status-Informationen (Betriebszustände, Derating, Limitierungen, etc.)
	Warnungen und Fehler Informationsfelder der anliegenden Warn- und Fehlermeldungen
	Test Bedienfeld für manuelle digitale Ansteuerungsbefehle von Drehzahl (N), Moment (Iq) oder Position
	Drehzahl (N) oder Moment (Iq): Numerische Eingabe (032767) [+] → Befehl Sollwert der positiven Eingabe von Drezahl (N) oder Moment (Iq) [O] → Befehl Sollwert null Numerisch für Drezahl (N) oder Moment (Iq) [-] → Befehl Sollwert der negativen Eingabe von Drezahl (N) oder Moment (Iq)
	Position: Numerische Eingabe (±32 Bit - 1) Dest → Befehl fahren auf die Numerische Eingabe von Position P. → Preset Eingabe als Positions-Istwert und -Sollwert Calib → Start einer Referenzfahrt
Fußleiste (schwarz)	 Links: Kommunikationszustand der Verbindung zu NDrive (Seriell oder CAN) Mitte: Firmware-Nummer Rechts: Achsenbezeichnung (selber definierbar)

NDrive Darstellung

Die frei wählbare Bildfläche (roter Bereich) ist in verschiedene Reiter unterteilt und dient allgemein der Einstellung der verschiedenen Parameter sowie verschiedenen Darstellungen der internen System-Strukturen.

Diese ist in die folgenden Reiter unterteilt:

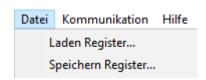
Reiter	Beschreibung:
Bildfläche:	
Start	UniTek NDrive Startseite mit einem Link zur Homepage und Kontakinformationen.
Einstellungen	Haupt Parameter Einstellungsseite. Kompakte Darstellung mit allen wichtigen Parametern zur Konfiguration des Servo Reglers. Diese ist unterteilt in die Hauptbereiche Motor, Servo und Parameter sowie verschiedene Unterbereiche.
Drehzahl	Strukturbild der Drehzahl- und Strom-Regelungslogik im Servo. Unterteilt in die Eingangs Drehazhl oder Momenten Steuerbefehle (Analog und Digital), Drehzahl -Rampenbildung und -Regler, Strom -Rampenbildung und -Regler, sowie Ausgangsgröße der PWMs und Spannungsausgabe.
Position	Strukturbild der Positions-Regelungslogik im Servo. Unterteilt in die Eingangs Positions Steuerbefehle und Reglerstruktur, Drehzahl-Rampenbildung und dem Strukturbild der Referenzfahrtlogik.
Logik	Einstellungsseite der digitalen Ein- und Ausgänge. Unterteilt in die Konfiguration der speziellen Funktionaliäten der Eingänge und der Zustandseinstellung zum automatischen setzen der jeweiligen Ausgänge.
Bus	Einstellungsseite der CAN-Bus Kommunikation.
Oszilloskop	Seite mit dem NDrive software Oszilloskop. Nützliches Hilfsmittel zur Konfiguration und Analyse der Betriebseigenschaften des Servos und der Abstimmung des Ansteuersystems.
Monitor	Übersichtsseite mit wichtigen Messgrößen.
Gerät	Übersichtsseite mit wichtigen Servoinformationen. (Dient Hauptsächlich für Service Support Analyse)
Diagnose	Diagnoseseite für das Anzeigen von individuell ausgewählten Messgrößen, sowie das manuelle Auslesen von Signalen und Einstellen von Parametern über die ID-Adressen.
Auto	Einstellungsseite für motorspezifische Parameter und dem Menü für die Aktivierung spezieller Sonderfunktionen.
Extra	Übersichtsseite mit wichtigen Servoinformationen. (Dient Hauptsächlich für Service Support Analyse)

Hinweis:

Parameter die in verschiedenen Reitern auftreten werden bei Änderungen automatisch in den anderen Reitern übernommen.

2.2 NDrive Darstellung – Bedienelemente

2.2.1 Bedienelemente – Eingabe und Auswahl


Eingabefeld

Ausgewähltes Parameter Eingabefeld anklicken (linke Maustaste), Zahlenwert eintippen und mit der Return Taste (Enter) bestätigen. Das geänderte Eingabefeld wird in den Servo-RAM geschrieben.

Nur ganze Zahlen oder Zahlen mit durch Punkt getrennte Nachstellen verwenden.

Positive Werte ohne Vorzeichen, negative Werte mit (–) Vorzeichen.

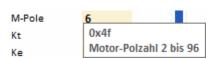
Die Zahlenwerte jedes Eingabefeld können auch mit dem Maus-Rollrad verändern werden. Auch hier wird der Zahlenwert sofort in den Servo-RAM geschrieben.

Dropdown-Menü

In der Menüleiste die ausgewählte Option anklicken, und die Menu-Items der ausgwählten Dropdownliste erscheint. Anschließend kann die gewünschte Funktion der einzellnen Menu-Items ausgewählt werden.

Pulldown-Menü

Pfeiltaste am Auswahlfeld anklicken. Das Auswahlfeld vergrößert sich. Nach oben oder unter durchrollen. Gewünschte Auswahl anklicken. Die gewünschte Auswahl wird übernommen und das Feld verkleinert sich auf eine Anzeige.



Auswahltasten

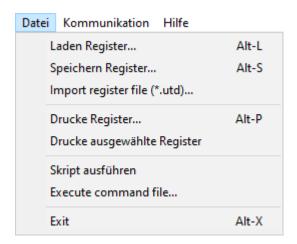
Gewünschte Option im Tastenfeld anklicken. Das grüne Tastenfeld zeigt die gewählte Funktion.

Der Haken im Funktionsfeld zeigt die gewählte Funktion

Seite: 11

Tooltip

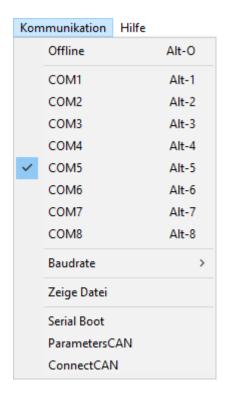
Mit der Maus den Cursor auf das Parameterfeld oder Einstellfeld schieben und ein Pop-up-Erklärungsfeld (Tooltip) öffnet sich.


Diese Beinhaltet in der Regel die zugehörige ID-Adresse und eine kurze Beschreibung.

3 Details Menüleiste / Hilfe

3.1 Details Menüleiste / Hilfe – Datei

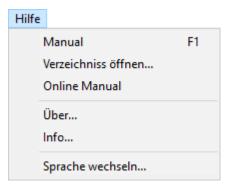
Inhalt der Menüleiste bei der Auswahl von **Datei** mit den zugehörigen Hotkeys.



Menu-Items von Datei:	Hotkey:	Beschreibung:
Laden Register	Alt + L	UniTek Register File (.urf) laden
Laden Register	7416 - 2	→ Parameter Datei vom PC in den Servo Ram laden
Speichern Register	Alt + S	UniTek Register File (.urf) speichern → Unterscheidung NDrive ist Online oder Offline
		Online: Parameter Datei vom Servo Ram auf den PC speichern Offline: Parameter Datei von NDrive auf den PC speichern
Import register file (*.utd)		UniTek Drive File (.utd) importieren
		→ Drive Datei vom PC ins Gerät laden
		Hinweis: Funktion momentan deaktiviert!
Drucke Register	Alt + P	Drucken des Inhalts aller Register (Parameter und Variablen)
Drucke ausgewählte Register		Drucken des Inhalts der ausgewählten Register
		→ Die Definition welche Register ausgewählt sind, erfolgt in der Datei "\settings\reglist.txt"
Skript ausführen		Auführen einer UniTek Script File (.usf)
		Hinweis: Nur für Produktion!
Execute command file		Ausführen einer Command File (.cmd)
		Hinweis: Funktion momentan deaktiviert!
Exit	Alt + X	NDrive schließen
		→ Verbindung zum Servo trennen und Fenster schließen

3.2 Details Menüleiste / Hilfe – Kommunikation

Inhalt der Menüleiste bei der Auswahl von **Kommunikation** mit den zugehörigen Hotkeys.



Menu-Items von Kommunikation:	Hotkey:	Beschreibung:
Offline	Alt + O	Offline gehen → Kommunikation (Seriel oder CAN) zum Servo beenden.
COM18	Alt + 18	NDrive über den Seriell COM Port (18) verbinden → Nach der Auswahl des COM Ports versucht NDrive sich mit dem Servo zu verbinden.
Baudrate		Einstellung der Seriell Baudrate → Die Servo default Baudrate ist 115200
Zeige Datei	Alt + V	Inhalt einer UniTek Register File (.urf) zeigen (offline) → Parameter Datei vom PC in NDrive laden. → NDrive trennt eine bestehende Verbindung zum Servo.
Serial Boot		Ausführen der Serial Boot Funktion Hinweis: Funktion momentan deaktiviert!
ParametersCAN		Parameter Einstellung für die CAN-Bus Konfiguration öffnen → Das Fenster CommunicationCAN öffnet sich.
ConnectCAN		NDrive über den CAN-Bus verbinden → Bedingung ist die richtige CAN-Bus Konfiguration im Fenster CommunicationCAN.

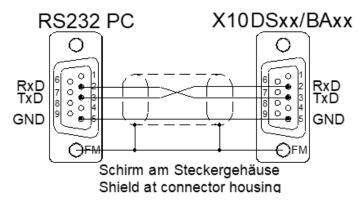
3.3 **Details Menüleiste / Hilfe – Hilfe**

Inhalt der Menüleiste bei der Auswahl von **Hilfe** mit den zugehörigen Hotkeys.

Hotkey:	Beschreibung:
F1	NDrive Manual Öffnen (Lokal)
	→ Öffnet das NDrive Manual im Verzeichnis "\manuals".
	Öffnet das lokale NDrive Verzeichnis "\manuals"
	Hinweis: Enthält viele weitere nützliche Servo Manuals
	wie z.B. ein Inbetriebnahme Manual für PMS-Motoren mit
	Resolver \rightarrow "BAMOCAR_Initialization_process.pdf".
	NDrive Manual Öffnen (Online)
	ightarrow Link zum Online NDrive Manual auf der UniTek Homepage .
	NDrive Software Versions-Information anzeigen
	→ Öffnet das About NDrive Utility Software Fenster das die
	Versions-Informationen über das verwendet NDrive anzeigt.
	NDrive Software Debug-Informationen anzeigen
	→ Öffnet das Menu Info Fenster das nützliche Debug-
	Information von NDrive anzeigt
	→ Nützlich für die Analyse bei Verbindungsproblemen von
	NDrive mit dem Servo.
	NDrive Sprache einstellen
	→ Öffnet das Language Fenster um die NDrive Sprache
	festzulegen.
	Hinweis: Nach einer Änderung der Sprache muss NDrive neu gestartet werden

4 Kommunikation mit NDrive

4.1 Kommunikation mit NDrive – Hardware


Für eine erfolgreiche Kommunikation mit NDrive entweder über Seriell RS232 oder CAN, muss eine entsprechende Hardware für die jeweilige Kommunikationsmethode verwendet werden.

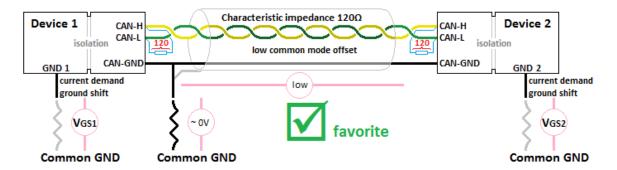
Seriell RS232 (COMx)

NDrive kommuniziert vom PC mit dem Servo über RS232 (default Baudrate 115200).

Bei PC mit USB-Schnittstelle einen USB zu Seriell RS232 Adapter verwenden.

Das Verbindungskabel nur bei getrennter Schnittstelle stecken und ziehen. Die Schnittstelle ist galvanisch mit dem Gerätenull (GND) verbunden.

CAN-Bus


NDrive verwendet für die Kommunikation vom PC mit dem Servo die CAN-Bus Bibliothek von PEAK-System Technik GmbH.

Bei PC mit USB-Schnittstelle einen PCAN-USB-Adapter verwenden.

Eine externe Spannungsversorgung vom CAN-Bus ist nicht notwendig. Der Servo hat eine interne Spannungsversorgung.

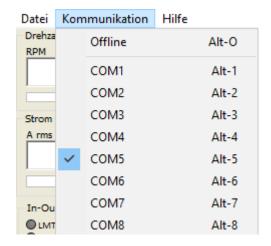
Das Verbindungskabel vom PCAN-USB-Adapter zum Servo muss für eine stabile Verbindung die entsprechenden Abschlusswiderstände haben.

Hinweis:

Für eine generelle CAN Kommunikation mit dem Servo unabhängig von NDrive, können auch andere CAN-Bus Anbieter (z.B. Vector CAN) verwendet werden.

4.2 Kommunikation mit NDrive – Verbindung herstellen

Für eine Kommunikation von NDrive mit dem Servo müssen keine zusätzlichen Treiber installiert werden. Jedoch müssen die entsprechenden Treiber der angeschlossenen Adapter (Seriell oder CAN) installiert sein.


4.2.1 Verbindung herstellen – Seriell RS232

Vor Beginn der Kommunikation sicherstellen, dass der COM Kanal für die serielle Verbindung bekannt ist.

In der Menüleiste die Option **Kommunikation** öffnen und die Schnittstelle **COMx** auswählen (COM1 bis COM8) und anklicken.

Angehakte Schnittstelle ist ausgewählt und die Verbindung zum Servo wird aufgebaut.

In der Fußzeile wird der Verbindungsstatus angezeigt. Die Verbindung war erfolgreich wenn **Drive is online (COMx, ...)** in der Statusleiste zu sehen ist.

Drive is online (COM5, 115200).

Alle Parameterfelder aktualisieren ihre Felder mit den Werten aus dem Servo Geräte-RAM Speicher.

Kommunikation beenden:

In der Menüleiste die Option **Kommunikation** öffnen und auf **Offline** klicken.

In der Fußzeile wird die getrennte Verbindung angezeigt.

Die Fußzeile blinkt: "Schnittstelle getrennt"

4.2.2 Fehlerhafte Kommunikation – Seriell RS232

- 1. Daten in der Warnung oder Fehler-Anzeige durchlaufen (scrollen)
 - → COM-Verbindung nicht in Ordnung oder falschen COM Port ausgewählt.
- 2. Status Symbole blinken oder ein Zusatzfenster erscheint mit einer Fehlerbotschaft
 - → Neues NDrive von der UniTek Homepage downloaden (Link).
 - → UniTek Kundendienst kontaktieren.
- 3. Alle Namen werden falsch dargestellt.
 - → Die Sprache über Hilfe → Change Language... auswählen und NDrive neu starten.

Kommunikation mit NDrive

4.2.3 Verbindung herstellen – CAN-Bus

Vor Beginn der Kommunikation sicherstellen, dass der CAN Port Kanal des PCAN-USB-Adapters bekannt ist.

Zu beginn muss die CAN Konfiguration einmalig vorgenommen werden.

In der Menüleiste die Option **Kommunikation** öffnen und **ParametersCAN** auswählen und das **CommunicationCAN** Fenster öffnet sich. Hier wird die CAN Kommunikation konfiguriert.

Bei einer ersten Verbindung sind die Default Einstellung:

Can Port: PCAN_USB1 (Abhängig Benutzer CAN Port Kanal!)

CAN Baud: 500000 (500 kBaud)

Servo RxID: 0x201 Servo TxID: 0x181

Um eine Verbindung herzustellen öffnet man in der Menüleiste die Option **Kommunikation** und klickt auf die Auswahl **ConnectCAN**.

In der Fußzeile wird der Verbindungsstatus angezeigt. Die Verbindung war erfolgreich wenn **Drive is online (PCAN_USBBUS1, 500000)** in der Statusleiste zu sehen ist.

Drive is online (PCAN_USBBUS1, 500000).

Alle Parameterfelder aktualisieren ihre Felder mit den Werten aus dem Servo Geräte-RAM Speicher.

Kommunikation beenden:

In der Menüleiste die Option Kommunikation öffnen und auf *Offline* klicken.

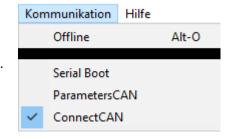
In der Fußzeile wird die getrennte Verbindung angezeigt.

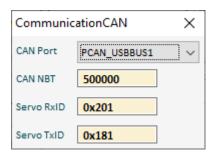
Die Fußzeile blinkt: "Schnittstelle getrennt"

4.2.4 Fehlerhafte Kommunikation – CAN-Bus

- 1. Keine Verbindung wird hergestellt.
 - → Hardware und Verkabelung überprüfen.
 - → Überprüfen ob für den PCAN-USB-Adapter die richtigen Treiber installiert sind und dass dieser auch wirklich erkannt wurde (→ siehe Windows Geräte-Manager).
 - → Die Einstellungen im Communication CAN Fenster überprüfen.

Eine gute Methode um die generelle CAN-Kommunikation mit dem Servo zu überprüfen, ist es eine einzelne CAN Botschaft über ein generelles CAN Programm (z.B. PCAN-View) zu senden und Überprüfen ob der Servo antwortet.


Seite: 17


Beispiel:

Send ID: 201h DLC: 3 Msg.: 3D 1B 00 \rightarrow Anfrage nach Firmware Nummer

Receive ID: 181h DLC: 4 Msg.: 1B DE 01 → Firmware Nummer 478

- 2. Alle Namen werden falsch dargestellt.
 - → Die Sprache über Hilfe → Change Language... auswählen und NDrive neu starten.

Kommunikation mit NDrive

4.3 Firmware Update

Im Ordner der PC-Benutzer-Software NDrive: ...\NDrive2-Software\manuals", das Manual "Firmware update-2020-C2Prog_DE.pdf" verwenden.

PC-Benutzer-Software NDrive:

UniTek Homepage: https://www.unitek-industrie-elektronik.de/

Link Download

Download NDrive2-Software.zip Drücke "NDrive2-Software.zip" und Speichern

Seite: 18

(z.B. Downloads)

Entpacken NDrive2-Software.zip Drücke RM + (Alle extrahieren... / Hier entpacken)

Ordner "NDrive2-Software\manuals"

5 Speichern und Laden von Geräteparameter

5.1 Speichern und Laden im Servo (Eprom)

Bei aktiver Kommunikation ist der aktuell im PC dargestellte Parametersatz mit gleichem Inhalt im Geräte-RAM vorhanden.

Bei einer Änderung der Parameter wird dieser mit der Return-Taste direkt ins Geräte-RAM geschrieben.

5.1.1 Speichern im Servo (Eprom)

Eprom Schreiben (Parameter dauerhaft Speichern):

Auf Seite Einstellung das Tastfeld "Eprom - STORE 0 oder 1" anklicken.

Die Parameter Daten werden in die ausgewählte Ebene 0 oder 1 vom Eprom geschrieben.

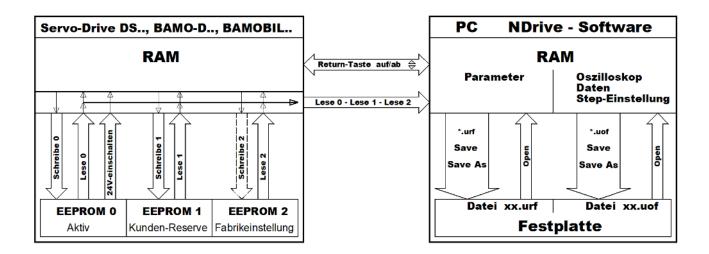
Die Eprom Ebene 0 beinhaltet den aktuellen Parametersatz.

Nach jedem Einschalten der 24 V Hilfsspannung werden alle Parameter aus der Eprom Ebene 0 in den RAM-Speicher vom Servo geladen.

Achtung:

Beim Ausschalten der 24 V Hilfsspannung gehen die RAM-Daten verloren.

5.1.2 Laden aus dem Eprom


Eprom Lesen (Parameter Laden):

Auf Seite Einstellung das Tastenfeld "Eprom - RECALL 0, 1 oder 2" anklicken.

Die Parameter Daten werden aus dem Eprom der ausgewählten Ebene 0, 1 oder 2 in den Geräte-RAM und in den RAM-Speicher vom PC (wenn Verbunden) gelesen.

Bei jedem Einschalten der 24 V Hilfsspannung werden alle Parameter aus der Eprom Ebene 0 in den RAM-Speicher vom Servo geladen.

Speichern und Laden von Geräteparameter

5.2 Parameter-Daten Speichern auf und Laden vom PC

5.2.1 Speichern von Parameter-Daten (.urf) auf dem PC

Das Speichern der .urf (unitek register file) Parameter-Datei auf den PC-Datenträger (Festplatte, usw.) mit dem Inhalt aus dem Geräte-RAM vom Servo kann auf 2 verschiedene Arten erfolgen.

Über die Menüleiste:

In der Menüleiste **Datei** anklicken. Die Option **Speichern Register...** anklicken. Das Fenster Save Register File wird geöffnet. Den Datei-Namen definieren und speichern. Datei Kommunikation Hilfe

Laden Register... Alt-L

Speichern Register... Alt-S

Mit dem Disketten Symbol (Speichern-Taste):

Auf der Seite Einstellungen das **Disketten Symbol (Speichern)** anklicken. Das Fenster Save Register File wird geöffnet .

Den Datei-Namen definieren und speichern.

5.2.2 Laden von Parameter-Daten (.urf) vom PC

Das Laden der "unitek register file" (.urf) Parameter-Datei von einem PC-Datenträger (Festplatte, usw.) in das Geräte-RAM vom Servo kann auf 2 verschiedene Arten erfolgen.

Über die Menüleiste:

In der Menüleiste **Datei** anklicken. Die Option **Laden Register...** anklicken. Das Fenster Load Register File wird geöffnet. Die Parameter (.urf) Datei auswählen und öffnen.

Mit dem Ordner Symbol (Laden-Taste):

Auf der Seite Einstellungen das **Ordner Symbol** (**Laden**) anklicken. Das Fenster Load Register File wird geöffnet.

Die Parameter (.urf) Datei auswählen und öffnen.

Nach dem Laden befinden sich die Parameter jetzt im Geräte-RAM Speicher vom Servo. Gleichzeitig werden alle Parameterfelder in NDrive mit den geladenen Werten überschrieben.

5.2.3 Offline-Bedienung von Parameter-Daten (.urf) auf dem PC

Laden, Verändern und Speichern von Parameter (.urf) Dateien im Offlinemodus:

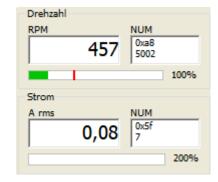
In der Menüleiste Kommunikation und dann Zeige Datei anklicken.

Nach der Auswahl der Parameter (.urf) Datei im Load Register File Fenster werden alle Parameter in NDrive geladen.

Seite: 20

Die geladenen Parameter können jetzt betrachtet und verändert werden.

In der Menüleiste **Datei** und **Speichern Register...** anklicken und auf die gleiche oder einer neuen Parameter (.urf) Datei speichern.



6 Basis Statusinformationen

6.1 Statusinformation - Drehzahl und Strom

Drehzahl in rpm (Umdrehung pro Minute) und als numerischer Wert vom Messwert aus der ID-Adresse 0xA8.


Strom in Arms (Motorstrom in Ampere effektiv) und als numerischer Wert vom Messwert aus der ID-Adresse 0x5F.

6.2 Statusinformation – Eingänge und Ausgänge

Bei positiver Eingangsspannung >10 V und bei positiver Ausgangsspannung leuchten die LED-Anzeigen.

Kurzz.:	Funktion:	ID-Adresse:
		0xD8
LMT1	Digitaler Eingang Limit 1	Bit 0
LMT2	Digitaler Eingang Limit 2	Bit 1
IN2	Digitaler Eingang Din 2	Bit 2
IN1	Digitaler Eingang Din 1	Bit 3
RUN (FRG)	Digitaler Eingang der Software Drehfeld Freigabe RUN	Bit 4
RFE	Digitaler Eingang der Hardware Drehfeld Freigabe RFE	Bit 5
	rsvd	Bit 6
	rsvd	Bit 7
OUT1	Digitaler Ausgang Dout 1	Bit 8
OUT2	Digitaler Ausgang Dout 2	Bit 9
RDY (BTB)	Hardware Relaisausgang BTB-Rdy	Bit 10
GO	Status der internen Freigabe GO	Bit 11
OUT3	Digitaler Ausgang Dout 3	Bit 12
OUT4	Digitaler Ausgang Dout 4	Bit 13
	rsvd	Bit 14
BRK1	Status der erregten Bremse	Bit 15

Basis Statusinformationen

6.3 Statusinformation – Statusanzeige

In der Statusanzeige / im Statusfeld werden die Betriebszustände angezeigt.

Kurzz.:	Funktion:	ID-Adresse:
		0x40
Ena	Antrieb freigegeben	Bit 0
	(Kombination Hardware RFE und Software RUN)	
NcR0	Drehzahl auf null begrenzt (letzter Sollwert noch aktiv)	Bit 1
Lim+	Endschalter Plus aktiv	Bit 2
Lim-	Endschalter Minus aktiv	Bit 3
OK	Antrieb in Ordnung (kein unkontrollierter Reset)	Bit 4
Icns	Stromgrenze auf Dauerstrom reduziert	Bit 5
T-Nlim	Drehzahlbegrenzter Drehmoment-Modus	Bit 6
P-N	Positionsregelung möglich	Bit 7
N-I	Drehzahlregelung aktiv	Bit 8
<n0< td=""><td>Drehzahl kleiner als 0.1 % (Stillstand)</td><td>Bit 9</td></n0<>	Drehzahl kleiner als 0.1 % (Stillstand)	Bit 9
Rsw	Referenz-Eingang angewählt	Bit 10
Cal0	Referenzfahrt läuft	Bit 11
Cal	Referenzposition erkannt	Bit 12
Tol	Position im Toleranzfenster	Bit 13
Rdy	Betriebsbereit (BTB/RDY Kontakt geschlossen)	Bit 14
Brk0	Nicht erregte Bremse bei Motor aktiv Bit 15	
SignMag	Sollwert invertiert	Bit 16
Nclip	Drehzahlbegrenzung aktiviert (N-Lim < 90 %)	Bit 17
Nclip+	Drehzahlbegrenzung positiv über Schalter	Bit 18
Nclip-	Drehzahlbegrenzung negativ über Schalter	Bit 19
Ird-Dig	Strombegrenzung über Schalter	Bit 20
luse-rchd	Grenze der Stromreduzierung erreicht	Bit 21
Ird-N	Stromreduzierung über Drehzahl	Bit 22
Ird-TI	Stromreduzierung über Endstufentemperatur aktiviert	Bit 23
Ird-TIR	Strom reduziert auf Dauerstrom über	Bit 24
	Endstufentemperatur ist aktiv	
Ird-10Hz	Stromreduzierung bei einer Drehfeld-Frequenz	Bit 25
	kleiner 10 Hz	
Ird-TM	Stromreduzierung über Motortemperatur	Bit 26
Ird-Ana	Stromreduzierung über Analogeingang (wenn ≤ 90 %)	Bit 27
lwcns	Stromspitzenwert-Warnung	Bit 28
RFEpulse	Gepulster RFE-Eingang Überwachung aktiv	Bit 29
Fiwe Acv	Feldschwächung aktiv	Bit 30
HndWhl	Handrad-Eingang angewählt	Bit 31

Seite: 22

Status
Or
Ena Ena
NcR0
Lim+
Lim-
○ OK
Icns
T-Nlim
O P-N
■ N-I
<n0< td=""></n0<>
Rsw
Cal0
Cal
Tol
O Rdy
Brk0

Status
SignMag
O Nclip
Nclip+
Nclip-
Ird-Dig
Iuse-rchd
■ Ird-N
O Ird-TI
Ird-TIR
O Ird-10Hz
■ Ird-TM
■ Ird-Ana
Iwcns
RFEpulse

Fiwe Acv HndWhl

6.4 Statusinformation – Fehler

Fehler	Zusatz:	ID-Adresse:	Servo
in NDrive:		0x8F∟	Anzeige:
NOREPLY- No RS232 COM reply	RS232 Schnittstelle gestört		
0: Eprom Read Fehler	Lesen aus dem Eprom Fehlerhaft	Bit 0	0
1: HW Fehler erkannt	Kritischer Hardware-Fehler erkannt	Bit 1	1
2: RFE Eingang offen	Sicherheitskreis offen	Bit 2	2
	(mit RUN Eingang aktiv)		
3: CAN TimeOut Fehler	CAN TimeOut Zeit überschritten	Bit 3	3
4: Geber Signal Fehler	Schlechtes oder Fehlendes Gebersignal	Bit 4	4
5: Netzspannung Min. Limit	Leistungsspannung fehlt (Digital)	Bit 5	5
	oder unterhalb DC-Bus min Grenze (Analog)		
6: Motor-Temp. Max. Limit	Motortemperatur zu hoch	Bit 6	6
7: IGBT-Temp. Max. Limit	Endstufentemperatur zu hoch	Bit 7	7
8: Netzspannung Max. Limit	Leistungsspannung > 1.8 x UN (Digital)	Bit 8	8
	oder oberhalb DC-Bus max Grenze (Analog)		
9: Kritischer AC Strom	Überstrom oder stark oszilierenden Strom	Bit 9	9
	erkannt		
A: Race Away erkannt	Durchdrehen ohne Sollwert	Bit 10	Α
B: ECode TimeOut Error	Schlechtes oder Fehlendes ECode protocol	Bit 11	В
C: Watchdog Reset	CPU Reset auf Grund des Watchdogs	Bit 12	С
D: I Offset Problem	AC Strom Offset Ermittlung	Bit 13	D
E: Interne HW Spannung	Fehler einer internen Spannung erkannt	Bit 14	Е
F: Ballastwiderstand überlastet	Nur bei digitalen Drehstrom-Motorregler	Bit 15	F

Beim Zustand **Fehler** wird die Information des Fehlers über die ID-Adresse 0x8F an NDrive übermittelt und im Feld "Fehler" angezeigt.

4: Geber Signal Fehler 5: Netzspannung Min. Limit 6: Motor-Temp. Max. Limit Clear errors

Achtung:

- Beim Anlegen der Hilfsspannung bei geschlossener
 Freigabe (RUN X1:7 aktiv) zeigt die rote Leuchtdiode einen Fehler.
 Es erfolgt keine Fehleranzeige in der 7-Segment Anzeige.
- Fehler 1 (HW Fehler erkannt) ist eine Summen-Fehler-Meldung der Hardwareüberwachung. Zusätzliches überprüfen vom Zustand des Signals I Fault (ID: 0xE9) nötig.

Seite: 23

Bei einem Fehler:

- leuchtet die rote Diode FAULT und die Fehlernummer wird angezeigt
- der BTB-Kontakt wird geöffnet
- die Software BTB-Meldung schaltet von 1 auf 0
- die Statusmeldung Rdy wird dunkel
- und beim Abschalten der Freigabe (Enable) bleibt die Fehlermeldung erhalten

Die Fehlermeldung wird gelöscht (Freigabe darf nicht gesetzt sein):

- beim Einschalten von Cancel errors durch einen digitalen Eingang
- beim Senden eines Cancel Errors Befehl über CAN oder Seriell
- bei einer positiven Flanke des Freigabe-Eingangs RUN

Leuchtanzeige am Servo

6.5 **Statusinformation – Warnungen**

Warnung	Zusatz:	ID-Adresse:	Servo
in NDrive:		0x8F _н	Anzeige:
0: Parameter Konflikt erkannt	Parameter von einem anderen Gerätetyp	Bit 16	0
1: Spezieller CPU Fehler	RUN Eingang prellt (oder EMI Probleme)	Bit 17	1
2: RFE Eingang offen	Sicherheitskreis offen	Bit 18	2
	(ohne RUN Eingang aktiv)		
3: Hilfsspannung Min. Limit ¹	Versorgungsspannung zu gering	Bit 19	3
4: Geber Signal Problem ²	Schlechtes oder Fehlendes Gebersignal	Bit 20	4
	(Fehler-Abschaltung wurde deaktiviert)		
5: Warn. 5		Bit 21	5
6: Motor-Temperatur (>87%)	T-motor > (I-red-TM oder 93 % von M-	Bit 22	6
	Temp)		
7: Igbt-Temperatur (>87%)	T-igbt > 87 % vom Limit	Bit 23	7
8: Vout Ausgabe-Grenze erreicht	Grenze der vorhandenen	Bit 24	8
	Spannungsausgabe erreicht		
9: Warn. 9		Bit 25	9
A: Drehzahlauflösung überschritten	Auflösungsbereich der Drehzahlmessung	Bit 26	Α
	überschritten		
B: Check ECode ID: 0x94	Fehler mit einer ECode Kodierung im ID	Bit 27	В
	Register 0x94 erkannt		
C: Tripzone Glitch erkannt	Tripzone ungewollt ausgelöst	Bit 28	С
D: ADC Sequencer Problem	Problem der ADC Sequencer Auswertung	Bit 29	D
E: ADC Messungs-Problem	Problem von internen ADC Spannungen	Bit 30	E
F: Ballastwiderstand (>87%) ¹	Ballastschaltung > 87 % überlastet	Bit 31	F
Nur bestimmte Motorregler Toblevihorusebung wurde dealtiviert. Wernung			

² Fehlerüberwachung wurde deaktiviert. Warnung soll auf Probleme hinweisen

Beim Zustand **Warnung** wird die Information der Warnung über die ID-Adresse 0x8F an NDrive übermittelt und im Feld "Warnungen" angezeigt.

Warnungen

6: Motor-Temperatur (>87%)

Achtung:

Bei einer Warnung:

• Blinkt die rote Fehler-LED und die grüne 7-Segment-Anzeige zeigt abwechselnd den Status und die Warnungs-Nummer an

Seite: 24

Beispiel: Warnung 6

Fault

Leuchtanzeige:

- FAULT LED rot blinkt
- Die Anzeige wechselt zwischen Status und Warn-Nummer 6

6: Motor-Temperatur (>87%)

6.6 Statusinformation – Betriebs-Status-Anzeige am Servo

Anzeige: (7 Segment LEDs)	Punkt/Strich:	Zustand:	Status in NDrive:
	blinkt	Prozessor aktiv	
	dunkel	Hilfsspannung fehlt oder Geräte interner Hardware-Fehler	
	blinkt	Startzustand nach Reset (Hilfsspannung 24 V Aus-Ein) Die erste Freigabe beendet den Blink-Zustand	OK = 0
	leuchtet dunktel	Antrieb freigegeben Antrieb gesperrt (nicht freigegeben)	OK = 1, ENA = 1 OK = 1, ENA = 0
	leuchtet	Drehzahl gleich Null (Stillstandsmeldung)	NO = 1
	leuchtet	Antrieb dreht rechts, N aktuell ist positiv	NO = 0
	leuchtet	Antrieb dreht links, N aktuell ist negativ	NO = 0
	blinkt leuchtet	Motorstrom auf Dauerstrom reduziert lwcns Motorstrom bei maximaler Stromgrenze lmax	lwcns = 1 lwcns = 0
	dunkel	Normalbetrieb. Motorstrom innerhalb der Stromgrenzen	lwcns = 0
	leuchtet für 0,1 s	Linker Balken: Ein neuer Befehl (Wert) wurde vom BUS oder RS232 empfangen	
		Rechter Balken: Digitaler Eingang geändert	

Beispiel: Motor rechtsdrehend

Punkt blinkt = Prozessor aktiv Unterer Strich = Antrieb freigegeben Rechter Strich = Motor dreht rechts

Seite: 25

(7 Segment LEDs

Ballastschaltung

schaltet: Richtungsbalken (unten rechts oder links) wird abgeschaltet während die

Ballastschaltung einschaltet.

7 Freigabe

7.1 Freigabe – Hardware Eingang RUN (FRG) (Enable)

Einschalten

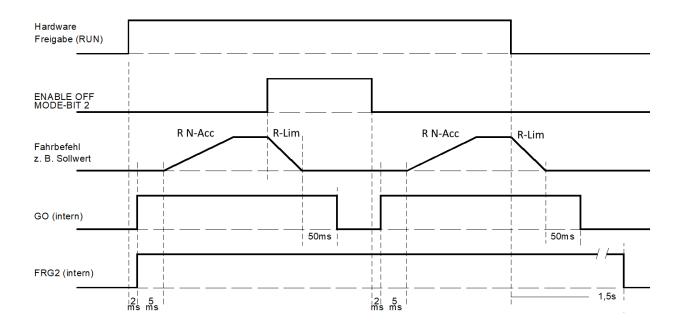
Spannung am Freigabe Eingang (X1:7, X1:G RUN (FRG)) ist zwischen 10..30 V=. Beim Einschalten der Freigabe wird die Leistungsstufe unverzögert freigegeben. Die Softwareansteuerung der Leistungsstufe erfolgt um 2 ms verzögert. Fahrbefehle wie Sollwerte, Referenzfahrt u.A. 5 ms nach Freigabe senden. Die Freigabe wird im Statusfeld bei **Ena** angezeigt.

Ausschalten

Spannung am Freigabe Eingang (X1:7, X1:G RUN (FRG)) ist kleiner 4 V=. Bei ausgeschalteter Freigabe ist der Verstärker elektronisch gesperrt.

Ausschalten mit Notstop-Funktion (Freier Auslauf Off)

Der Antrieb wird abgebremst und dann freigeschaltet.


Beim Ausschalten der Freigabe wird der interne Drehzahl-Sollwert **N cmd Ramp** mit der eingestellten Rampe **R-Lim** auf Null gesteuert.

Mit dem internen **GO-Befehl** wir die Leistungsstufe nach Stillstand +50ms oder nach der Rampenzeit **(R-Lim)** + 50 ms gesperrt. Spätestens nach 1.5 s wird die Leistungsstufe gesperrt.

Ausschalten ohne Notstopp- Funktion (Freier Auslauf ON)

Beim Ausschalten der Freigabe wird die Leistungsstufe sofort gesperrt. Der Antrieb läuft momentenfrei aus.

R-Lim (wenn Freier Auslauf OFF ist) so einstellen, dass der Antrieb bis zum Stillstand abgebremst wird. 50 ms nach Ablauf der Abschalt-Rampenzeit (R-Lim) wird das Leistungsteil gesperrt. Der Antrieb ist danach momentenfrei.

7.2 Freigabe – Sperre und Freigabe über Schnittstellen (CAN-Bus, RS232)

Hierbei handelt es sich um ein spezielles Verfahren eine Freigabe zu erhalten, falls die Freigabeeingänge bereits anliegen. D.h. die Hardware-Freigabe RUN (FRG) und der Sicherheitseingang RFE sind bereits eingeschaltet.

Sperre

Mit dem Befehl **ENABLE OFF** (MODE-BIT $0x51_{Bit 2} = 1$) wird der interne Drehzahl-Sollwert **N cmd (ramp)** mit der im Parameterfeld Speed eingestellten Rampe **R-Lim** auf Null gesteuert.

Freigabe

Mit dem Befehl **NICHT ENABLE OFF** (MODE-BIT 0x51_{Bit 2} = 0) wird der Servo unverzögert freigegeben.

Software-Freigabe von NDrive

Die Hardware-Freigabe RUN (FRG) und der Sicherheitseingang RFE sind bereits eingeschaltet.

Schaltfeld "Dis"

Grau = Software-Freigabe = EIN Rot = Software-Freigabe = AUS

Abfolge für die Freigabe bei fest verdrahtetem RFE und RUN Eingang:

- 1. Servo zuerst sperren mit dem Befehl **ENABLE OFF** (MODE-BIT 0x51_{Bit 2} = 1).
- 2. Servo dann entsperren mit dem Befehl **NICHT ENABLE OFF** (MODE-BIT $0x51_{Bit 2} = 0$).

Seite: 27

→ Der Servo wird unverzögert freigegeben.

Nur in dieser Reihenfolge kann eine Freigabe erfolgen. Gleichzeitig werden alle gespeicherten Fehler gelöscht.

7.3 Sicherheits-Eingang RFE (Drehfeld-Freigabe)

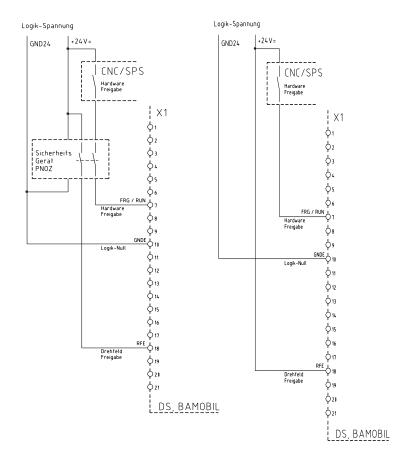
Achtung:

Bei abgeschaltetem Freigabe-Eingang RUN (FRG) - oder der Drehfeld-Freigabe (RFE) ist der Antrieb momentenfrei. Ohne mechanische Bremse oder Sperre kann der Antrieb durchfallen oder sich bewegen.

Die Motorleitungen sind **nicht** spannungsfrei. Nur das Drehfeld ist gesperrt. Bei Arbeiten am Motor oder Servo muss der Servoverstärker vom Netz getrennt werden

7.3.1 Betrieb mit externen RFE Eingang

- Zweikanalige Freigabe-Sperre über ein Sicherheits-Schaltgerät
- Freigabe-Eingang RUN (FRG) plus Drehfeld-Freigabe-Eingang RFE einschalten
- Sicherheitsgerät Kontakte geschlossen
- Freigabe FRG/RUN 0.5 s nach RFE


Sicherheits-Abschaltung

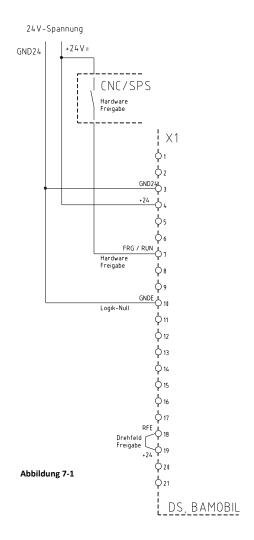
- Sicherheitsgerät Kontakte geöffnet
- Kein RUN (FRG) Signal sperrt im ersten Sperrkanal die PWM-Impulse im Prozessor
- Kein RFE Signal sperrt die PWM-Impulse in einem zweiten Sperrkanal nach dem Prozessor

Wiedereinschalten

- Sicherheitsgerät entriegeln
- Sicherheitsgerät Kontakte geschlossen

Erst nach erneuter Freigabe RUN (FRG) zeitlich nach der Drehfeld-Freigabe (RFE) kann der Motor angesteuert werden.

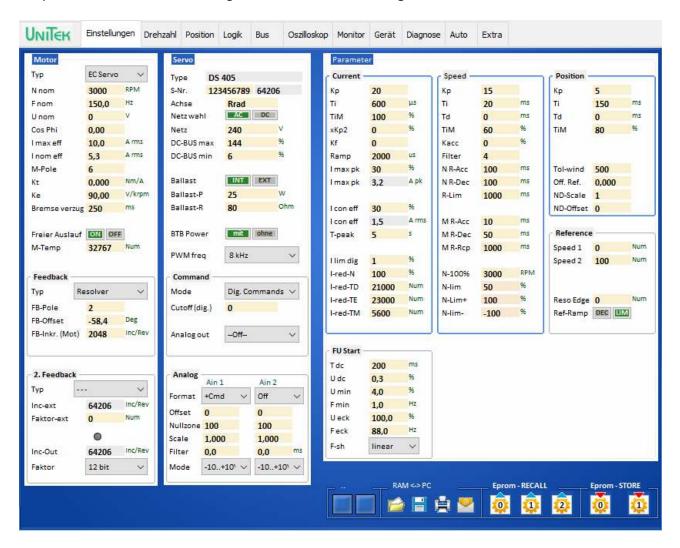
7.3.2 Betrieb ohne externen RFE Eingang


Der Eingang RFE muss mit der Logikspannung gebrückt werden. D.h. 24 V Ausgang wird als Eingang für RFE verwendet.

Ist die Logikspannung gleich Hilfsspannung so wird der RFE Eingang mit +24V gebrückt.

Freigabe RUN (FRG) 0.5 s nach RFE-Signal.

Achtung:


Bei Rundstecker oder Tyco-Stecker (BAMOCAR, BAMOBIL) die Steckerbelegung aus dem Geräte-MANUAL verwenden.

8 Einstellungen

Haupt-Parameterübersicht und Eingabe auf der Seite Einstellungen.

Eingabefelder für die Motordaten, die Gerätedaten (Servo), die Parameterdaten, und die Symbolbuttons für die Speicher- und Ladefunktionen.

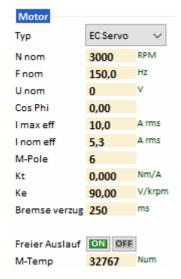
Seite: 30

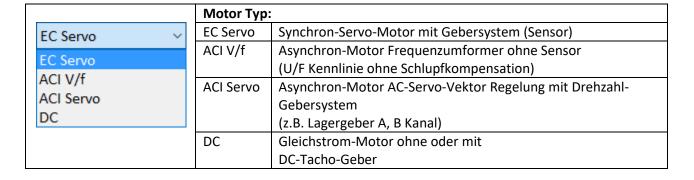
Die Einstellungen für Motor und Servo werden nur auf der Seite Einstellungen eingegeben. Die Parameter-Eingaben können auf verschiedenen Seiten eingegeben werden. Die geänderten Parameterdaten werden sofort auf allen Seiten übernommen. Siehe Detailbeschreibung der Eingabefelder.

Achtung:

Vor der ersten Inbetriebnahme und bei Änderungen des Motortyps sind die Daten in den Einstellfeldern mit dem Typenschild oder Datenblatt des Motors zu vergleichen.

Motorspezifische Anschlussvorschriften beachten!

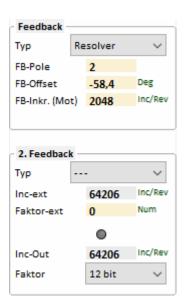

Im Online-Betrieb dürfen die Einstellwerte nur von geschultem Fachpersonal geändert werden!


8.1 Einstellungen – Motor

Parameter-Übersicht für Motor-Nenndaten anhand der Informationen vom Motor-Typenschild und Motor-Datenblatt.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Тур	Auswahl Motorart (EC-Servo, FU, FU-Servo, DC)			0x5A _{Bit 1312}
N nom	Motordrehzahl (für FU-Autotuning)	6065000	rpm	0x59
F nom	Frequenz Motornenndrehzahl (für FU-Modus)	201200	Hz	0x05
U nom	Spannung bei Motor-Nenndrehzahl (für FU-Modus)	01000	V	0x06
Cos Phi	Motor-Leistungsfaktor (für FU-Modus)	0327,00	%	0x0E
I max eff	Motor-Maximalstrom	01000,0	Arms	0x4D
I nom eff	Motor-Dauerstrom	01000,0	Arms	0x4E
M-Pole	Motor-Polzahl (2 x Polpaare)	296	Num	0x4F
Kt	Motor Kt Konstante	050,000	Nm/A	0x87 _L
Ke	Motor Ke Konstante (Gegen EMK)	0500,00	V/krpm	0х87н
Bremse	- Anzugsverzögerungszeit	01000	ms	0xF1
verzug	der elektromechanischen Motorbremse			
	- Auslaufverzögerung			
	wenn keine Bremse angeschlossen ist			
Freier	Freier Auslauf (ON) oder Not-Stop Bremsung (OFF)	On / Off		0x5A _{Bit 3}
Auslauf	(beim Abschalten der Freigabe RUN (FRG))			
M-Temp	Motor-Übertemperatur-Abschaltpunkt (Errorcode 6)	032767	Num	0xA3
	(Bei 93 % erfolgt eine Warnmeldung 6 mit Strom			
	Derating Ird-TM Aktivierung)			

Übersicht der Auswahl der Motorart


8.2 Einstellungen – Feedback (Geber)

Parameter-Übersicht für die Einstellfeld der Feedback-Geber-Nenndaten anhand vom Geber Datenblatt.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Тур	Auswahl Feedback			0xA4 _{Bit 40}
	(Rot_Enc_TTL, Resolver,)			
FB-Pole	Geber-Polzahl	212	Num	0xA7
FB-Offset	Phasenwinkel-Korrektur	±360	Grad	0x44
FB-Ink. (Mot)	Auflösung-Geber	10248192	Inc/Rev	0xA6
Voltage	DC-Tachospannung		mV/rpm	
Inc-Out	Auflösung- 2.Geber		Inc/Rev	0xCF _L
Faktor	Multiplikator SIN/COS Inc.	416	Num	0x7E

Übersicht der passenden Feedback Geber für die jeweiligen Motor Typen.

Motor Typ:	Passender Feedback Typ:
EC Servo	Rot_Enc_TTL, Enc_TTL (bedingt)
	Resolver
	Abs_Enc_SC, Enc_SC, Abs_SC
	Rot
ACI V/f	SLS, Enc_TTL
ACI Servo	Enc_TTL
	Resolver
	Abs_Enc_SC, Enc_SC, Abs_SC
DC	Enc_TTL
	Resolver
	Abs_Enc_SC, Enc_SC, Abs_SC
	DC_Tacho
	DC_Arm, BL_Arm, DC_Arm_Vir

Achtung:

- Geräte sind abhängig Ihrer Hardwarekonfiguration immer nur für bestimmte Geber ausgelegt.
- Der Geber muss mit der Hardwarekonfiguration vom Motor abgestimmt sein.
- Die Auswahl der Geberart muss übereinstimmen mit der Konfiguration vom Servo für die jeweilige Geberart. D.h. ein digitaler Servo ist nur für eine bestimmte Geberart konfiguriert.

Einstellungen

Resolver-Geber:

Resolver Resolver Geber mit 10 kHz und 2 Vpp

FB-Pole Geber-Polzahl 2 bis 12

FB-Offset Korrekturwert für die mechanische Geber-Einstellung

Polradwinkel ±360 Grad

Automatische Erkennung des Offset-Winkels = siehe Seite AUTO

Inkremental-Geber:

Rot_Enc_TTL Inkrementalgeber 5 V TTL mit Rotorlagespuren

FB-Offset Korrekturwert für die mechanische Geber-Einstellung

Automatische Erkennung des Offset-Winkels = siehe Seite AUTO

FB-Inkr (Mot) Impulszahl pro Umdrehung

Achtung: Die Geber-Rotorlage-Polzahl muss mit der Motorpolzahl übereinstimmen!

ENC-TTL Inkrementalgeber 5 V TTL ohne Rotorlagespuren

FB-Inkr (Mot) Impulszahl pro Umdrehung

Nur für Asynchron-Motoren oder Sonderantriebe

SINUS/COSINUS-Geber:

Abs_Enc_SC 1 Vss-Sin/Cos-Geber mit Sin/Cos-Kommutierungsspuren

FB-Offset Korrekturwert für die mechanische Geber-Einstellung

FB-Inkr (Mot) Impulszahl pro Umdrehung

ENC_SC 1 Vss-Sin/Cos-Geber ohne Kommutierungsspur

FB-Inkr (Mot) Impulszahl pro Umdrehung

ABS_SC Sinus-Cosinus-Signal pro Motor-Polpaar (analoge Hallsensoren)

M-Pole, Motorpolzahl und Geberpolzahl gleich (M-Pole = FB-Pole)

FB-Pole

Rotorlage-Geber 5 V, 15 V:

ROT_TACHO Rotorlagegeber mit bl-Tacho (DC-Tacho)

FB-Offset Korrekturwert für die mechanische Geber-Einstellung

ROT Rotorlagegeber ohne bl-Tacho, nur Rotorsignale (3 digitale Hallsensoren)

Seite: 33

FB-Offset Korrekturwert für die mechanische Geber-Einstellung

BL-ARM EC/AC Motor ohne Tacho

Achtung: Die Geber-Rotorlage-Polzahl muss mit der Motorpolzahl übereinstimmen!

Einstellungen

Feedback für DC-Motoren:

DC_TACHO Gleichstrommotor mit Tacho

FB-Offset 120 = Anschluss M1-M3 (0=M2-M3, -120=M1-M2)

DC-ARM Gleichstrommotor mit Ankerspannungssensor (ohne Tacho)

FB-Offset 120 = M1-M3 (0=M2-M3, -120=M1-M2)

DC_ARM_VIR Sensorlos DC-Motor ohne Tacho, ohne Ankerspannungsmessung

FB-Offset 120 = Anschluss M1-M3 (0=M2-M3, -120=M1-M2)

Sensorlose Antriebe:

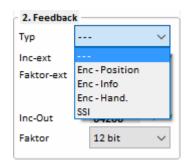
SLS Sensorlos nur für AC Motor ohne Feedback-Geber im FU-Betrieb (ACI V/f)

keine Einstellung

SLS_SMO noch nicht verfügbar

SLS_Usens noch nicht verfügbar

Bei Änderung der Feedback-Parameter ist ein Parameter-Reset notwendig Parametersatz schreiben ins Eprom (Eprom - STORE 0) und dann den Parametersatz neu lesen (Eprom - RECALL 0)


8.3 **Einstellungen – 2. Feedback**

Parameter-Übersicht für die Einstellung vom X8 Anschluss als zweiter Zählereingang

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Тур	Auswahl 2. Zähleingang			0xA4 _{Bit 75}
Inc-ext	Auflösung Inkremente 2. Geber		Inc/Rev	0xCF _L
Faktor-ext	Geberfaktor 2. Geber	416	Num	0x7E
Inc-Out	Inkremente Ausgang Auflösung		Inc/Rev	0xCF _H
Faktor	Multiplikations-Faktor der Grund-Impulszahl bei			0xA4 _{Bit 1412}
	SinCos (SC)			

Typ: Auswahl für 2. Zähleingang (2. Feedback)

	Eingang abgeschaltet
Enc - Position	Eingang als Positionseingang
Enc - Info	Eingang nur Anzeige
Enc - Hand.	Eingang als Handradeingabe
SSI	SSI-Geber Eingang

Beispiel: Einstellung X8 als Eingang für inkrementale Gebersignale

Typ = Enc - Position:

Inkrementalgeber TTL 5 V A,B,N + Gegentakt Brücke X8:1 nach X8:6 (X8 als Eingang geschaltet)

Faktor-ext (Skalierung):

Übersetzung berechnen

1 Motorumdrehung = 65536 Num (interner Zähler)

Faktor-ext für die Anpassung vom 2.Geber (0x7E)

Encoder_2_Scale = 65536 / Geberimpulse vom 2.Geber pro Motorumdrehung * 4

Seite: 35

Eingabe bei Factor-ext. (0x7E) = Encoder_2_Scale * 16384

Ausgabe:

1 Motorumdrehung entspricht 0,1 Geberumdrehungen Geberimpulszahl 1000 rpm Impulse pro Motorumdrehung 0,1 * 1000 * 4 = 400

Eingabe bei Encoder_2_Scale = 65536 / 400 = 163,840

Eingabe Factor-ext. (0x7E) = 163,840 * 16384 = 2684354

Einstellungen

Beispiel: Einstellung X8 als Ausgang für inkrementale Gebersignale

Typ = Enc - Info:

Einstellwert der Ausgabe-Impulszahl bei Resolver Gebersignale am X8 Anschluss.

Die vom Motor gelieferten Gebersignale (Feedback) werden als TTL- Encodersignale für die Ausgabe am Sub-D Stecker X8 ausgegeben (Beispiel CNC-Steuerung).

Seite: 36

Signale: Kanal A, Kanal /A, Kanal B, Kanal /B, Kanal N, Kanal /N

Der Encoder-Ausgang ist potentialgetrennt.

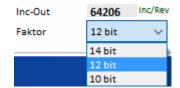
Die Spannungsversorgung erfolgt über das Geber-Kabel von der CNC/SPS-Steuerung.

Spannungsversorgung 5 V (±0.2 V)

Das Ausgangssignal entspricht RS485

Option: Interne Versorgung vom Servo

(LBR1 + LBR2)


Auflösung:

Die Auflösung ist bei den Varianten -RS und -SC programmierbar.

Bei -IN entspicht die Ausgabe der Geber-Impulszahl.

Faktor - Multiplikations-Faktor der Grund-Impulszahl bei SinCos (SC).

Impulse pro Umdrehung:	Auflösung:	ID-Adresse:	
		0xA4 _{Bit 1412}	
256	10 Bit	3 dec	
1024	12 Bit	2 dec	
4096	14 Bit	1 dec	

8.4 Einstellungen – Externe Bremse

Einstellung und Ansteuerung einer externen Bremse:

Viele Motoren haben eine eingebaute Bremse die zunächst durch eine Ansteuerung gelöst werden muss bevor man den Motor drehen lassen kann. Der Umrichter kann diese externe Bremse entsprechend ansteuern.

Die im Motor eingebaute Bremse hat im stromlosen Zustand die maximale Bremskraft.

Der elektrischen Ansteuerung folgend hat die Bremse eine typenbezogene Anzugs- und Abfallverzögerung definiert über den Parameter **Bremse verzug**.

Der digitale Ausgang kann eine Bremse bis 24 V und 1 A direkt schalten.

Bei Bremsen mit höheren Strömen oder höheren Spannungen muss ein Relais zwischengeschaltet werden.

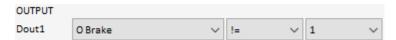
Der Bremsausgang wird auf der Seite Logik im Parameterfeld - Output aktiviert.

Im Pulldown-Menü bei **Dout 1**, **Dout 2** oder **Dout 3** den Befehl **O-Break** durch Anklicken ins Anzeigefeld übernehmen.

Im Pulldown-Menü den Operanten [=] (gleich) oder [!=] (nicht gleich) durch Anklicken übernehmen. Schaltfunktion des Ausgangs durch die Eingabe von **0** oder **1** im Variablenfeld wählen (Normal 0).

Auf der Seite Einstellungen im Parameterfeld **Motor** die Abfallverzögerung der Motorbremse (vom Datenblatt der Bremse) beim Parameter **Bremse verzug** (0..500 ms) eingeben.

Bremse aktiv wird im Statusfeld mit "BRK1" angezeigt.


Achtung:

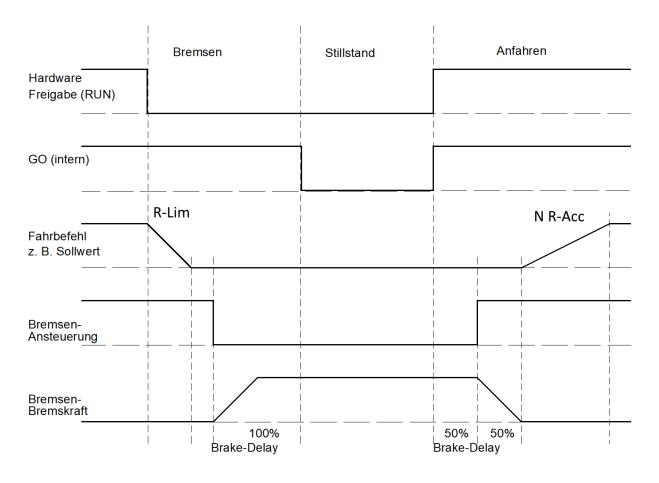
Direkt beim Bremsenanschluss am Motor eine Freilaufdiode oder einen Varistor anschließen.

Seite: 37

Beispiel der Einstellung eines Bremsenausgangs auf der Seite Logik:

Digitale Ausgänge	Auswahl
Dout1	Bremse bei abgeschalteter Freigabe stromlos.
	Abfallverzögerung einstellen mit Brake delay.
Dout2	Off
Dout3	Off
Dout4	Off

Einstellungen


Beschreibung der Bremsfunktion (Ansteueurung der externen Bremse):

Beim Deaktivieren der Freigabe RUN (FRG) oder dem CAN-Befehl **ENABLE OFF = 1** wird der interne Drehzahl-Sollwert **N cmd Ramp** mit der programmierten Rampe **R-Lim** auf Null gesteuert. Nach einer festen Verzögerungszeit von 50 ms wird der Parameter **Bremse** von 1 auf 0 geschaltet. Die Bremskraft steigt an. Nach der programmierten Zeit **Bremse verzug (Brake-Delay)** wird der interne Parameter **GO** auf 0 geschaltet und der Servo gesperrt (Momentenfreier Stillstand).

Beschreibung der Anfahrfunktion (lösen der externen Bremse):

Beim Aktivieren der Freigabe RUN (FRG) oder dem CAN-Befehl **ENABLE OFF = 0** wird bei aktiver Bremse der Sollwert auf 0 gehalten und der Status **GO** sofort auf 1 geschaltet.

Nach 50 % der Zeit **Bremse verzug (Brake-Delay)** wird die Bremse abgeschaltet und nach weiteren 50 % wird der Sollwert mit der Rampe **N R-Acc** erhöht.

Achtung:

- Die Summe der Zeiten von **R-Lim** plus **Bremse verzug** müssen kleiner sein als 1 s.
- Bei 1,1 s nach dem Abschalten der Freigabe wird die Endstufe hardwaremäßig gesperrt.
- Die elektrische Bremsung wird abgebrochen und der Antrieb läuft frei aus. Nach Ablauf der zu langen Zeit von **R-Lim** plus **Bremse verzug** fällt die mechanische Bremse ein und stoppt den Antrieb.

Einstellungen

8.5 Einstellungen – Ballast-Schaltung

- Bei Servo Geräten mit einer digitalen Zwischenkreis Einstellung (0x5A_{Bit 7} = 0) arbeitet die Ballastschaltung direkt von der Hardware gesteuert.
- Bei Servo Geräten mit einer analogen Zwischenkreis Einstellung (0x5A_{Bit 7} = 1) wird die Ballastschaltung von der TMS Regelkarte gesteuert.

Ansteuerung für die Ballast-Schaltung ist abhänig der Konfiguration der Zwischenkreisüberwachung.

- → Aktivierung der Ansteuerung der Ballast-Schaltung bei 93 % abhängig von DC-BUS max.
- → Deaktivierung der Ansteuerung der Ballast-Schaltung bei 87 % abhängig von DC-BUS max.
- Bei internem Ballast-Widerstand werden die Einstellparameter aus der Geräte-Erkennung automatisch eingestellt.
- Bei externen Ballastwiderständen werden die Werte für den Widerstand (Ballast-R) und die Widerstands-Leistung (Ballast-P) als Parameter eingegeben.

Ballast INT = Interner Ballast-Widerstand EXT = externer Ballast-Widerstand Ballast-P Widerstands-Leistung in W eingeben Ballast-R Widerstands-Wert in Ohm eingeben

Die Ballastleistung wird bei internem Ballast-Widerstand aus den Daten der Geräte-Type berechnet.

Bei externem Ballastwiderstand wird die Ballastleistung aus den eingegebenen Werten von **Ballast-P** und **Ballast-R** berechnet.

Die Ballastleistung wird auf der Seite Monitor als Ballast-Energie (0x45_L) angezeigt.

Im Oszilloskop kann die DC-BUS-Spannung (Vdc-Bus (filt)), der Ballast-Schaltimpuls (I Regen und die Ballastleistung (Ballast-Energie) dargestellt werden.

Bei 87 % der Ballastleistung erfolgt eine Warnung (Ballastschaltung >87 % überlastet (0x8F_{Bit 31})) und bei 100 % wird das Gerät mit Fehlermeldung (Ballastschaltung überlastet (0x8F_{Bit 15})) abgeschaltet.

Die Funktion der Ballastschaltung wird am Servo angezeigt.

Bei der 7-Segment-Anzeige wird der Sollwert-Richtungsbalken (unten links oder rechts) abgeschaltet, so lange die Ballastschaltung aktiv ist.

8.6 Einstellungen – Überwachung Motortemperatur

Parameter-Übersicht der Motortemperaturüberwachung.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
I-red-TM	Einsatzpunkt Stromreduzierung anhand	032767	Num	0xA2
	Motortemperatur			
	→ Warnung 6			
M-Temp	Abschaltpunkt anhand Motortemperatur	032767	Num	0xA3
	→ Fehler 6			
	Bei Motortemperatur > 93 % von M-Temp			
	→ Warnung 6 und Stromreduzierung			
T-motor	Aktuelle Motortemperatur	032000	Num	0x49

Hinweis:

Auf Grund der Vielzahl an verschiedenen Temperatursensoren wird die Motortemperatur (T-motor) als rein numerischer ADC Wert ausgegeben. Die entsprechenden Kurven und somit die eigentliche physikalische Temperatur muss über entsprechende Tabellen ermittelt werden.

Eine Deaktivierung der Überwachung erfolgt mit der Einstellgrenze von 32767.

Stromreduzierung (Derating) anhand der Motortemperatur:

Steigt die Motortemperatur (T-motor) über den eingestellten Wert von I-red-TM,

- FW ≤ 478:
 - wird die maximale Stromgrenze ab dem Einsatzpunkt von I-red-TM linear bis zum Abschaltpunkt von M-Temp auf Dauerstrom reduziert.
- FW ≥ 479:
 - o wird die Stromgrenze auf Dauerstrom reduiziert.
- wird im Statusfeld die Meldung Ird-TM (0x40_{Bit 26}) gesetzt
- wird die Warnung 6 gesetzt.

I-red-TM 5600 Num

Fehlerabschaltung anhand der Motortemperatur:

Steigt die Motortemperatur (T-motor) über den eingestellten Wert von M-Temp,

- erfolgt eine Fehlerabschaltung vom Inverter
- wird der Fehler 6 (MOTORTEMP) ausgegeben

Steigt die Motortemperatur (T-motor) über 93 % des eingestellten Wertes von M-Temp,

Seite: 40

- wird die maximale Stromgrenze auf Dauerstrom reduziert
- wird im Statusfeld die Meldung Ird-TM (0x40_{Bit 26}) gesetzt
- wird die Warnung 6 gesetzt.

M-Temp 7000 Num

8.7 Einstellungen – Leistungsanschluss / Zwischenkreisüberwachung

Hinweis / Wichtig:

Die Manuelle Konfiguration der Zwischenkreisüberwachung funktioniert nur bei Servo Geräten die über eine analoge Zwischenkreismessung verfügen.

Dies betrifft alle Batterie DC Servo Geräte (Bamobil, Bamocar) und spezielle AC Servo Geräte (DPC).

	Netz Typ	AC	DC
Parameter-Übersicht für die Auswahl vom	Netzspannung	230	V
Leistungsanschluss und der Einstellung der Überwachung vom DC-Bus bei analoger	DC-BUS max	120	%
Zwischenkreismessung.	DC-BUS min	10	%

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Netz Typ	Auswahl der Leistungsspannung	AC / DC		0x5A _{Bit 19}
Netzspannung	Größe der Netz-Spannung	01000	V	0x64
DC-BUS max	Maximale Spannungsgrenze vom DC Bus (Software)	0200	%	0xA5 _H
DC-BUS min	Minimale Spannungsgrenze vom DC Bus (Software)	0200	%	0xA5 _L

Netz Typ:

Die Auswahl der Leistungsspannung zwischen Wechsel- (AC) oder Gleichspannung (DC) ist Hardware Abhängig und sollte nur bei genauen Kenntnissen vom Motorregler erfolgen.

Einstellungen

8.7.1 Zwischenkreisüberwachung bei Firmware ≥ 478

Netzspannung:

Die Verwendete Bezugsgröße für die Min/Max Zwischenkreisüberwachung ist abhängig der tatsächlichen internen DC-Bus Spannung. Abhängig der Auswahl bei **Netz Typ**.

Bei einem **Netz Typ** von:

- [DC] → Bei Netzspannung die angeschlossene nominelle DC Spannung angeben.
 - (z.B.: Netzspannung = $400 \text{ V} \rightarrow \text{DC-Bus} = 400 \text{ V}$)
- [AC] → Bei Netzspannung die angeschlossene nominelle AC Phasen-Phasen Spannung angeben. Der Spannungswert im DC-Bus Zwischenkreis ist dann um den Faktor Wurzel 2 größer.

```
(z.B.: Netzspannung = 400 \text{ V} \rightarrow \text{DC-Bus} = 565 \text{ V})
```

DC-BUS max:

- Einstellgrenze für die max. Software-Spannungsgrenze im prozentualen Bezug zur Eingabe bei **Netzspannung** und abhängig der Auswahl von **Netz Typ**.
- Beim Überschreiten dieser Grenze erfolgt eine Fehlerabschaltung, der Regler wird gesperrt und der Fehler 8 wird ausgegeben.
- Die Hardware-Überspannungsüberwachung arbeitet unabhängig von der Software-Einstellung.
- Einstellwert für die Ansteuerung der Ballast-Schaltung (Servotyp abhängig).

DC-BUS min:

- Einstellgrenze für die min. Software-Spannungsgrenze im prozentualen Bezug zur Eingabe bei **Netzspannung** und abhängig der Auswahl von **Netz Typ**.
- Beim Unterschreiten dieser Grenze erfolgt eine Fehlerabschaltung, der Regler wird gesperrt und der Fehler 5 wird ausgegeben.
- Die Hardware-Unterspannungsüberwachung ist abhängig vom Servotyp und arbeitet unabhängig von der Software-Einstellung.

```
Beispiel 1: Netz Typ = DC und Netzspannung = 400 \text{ V} DC-BUS max = 110 \% = 440 \text{ V} DC-BUS min = 10 \% = 40 \text{ V} Beispiel 2: Netz Typ = AC und Netzspannung = 400 \text{ V} DC-BUS max = 110 \% = 622 \text{ V} DC-BUS min = 10 \% = 62 \text{ V}
```

Hinweis / Wichtig:

Auflösungsprobleme der internen min. und max. Berechnungen der Grenzen bei zu starken Abweichungen bei Eingabe bei Netzspannung im Bezug zur eigentlichen nominellen Servo-Nennspannung.

D.h. bei einem Servo mit einer Nennspannung von 700 V und einer Eingabe von Netzspannung = 10 V, ist keine zuverlässige Berechnung der Grenzen gewährleistet.

Einstellungen

8.7.2 Zwischenkreisüberwachung bei Firmware < 478

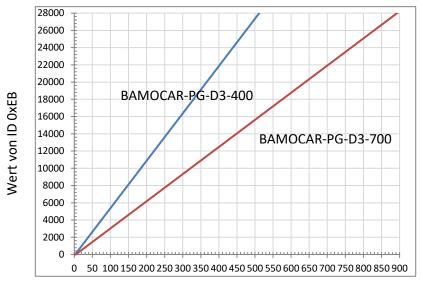
Netzspannung:

Dieser Einstellungswert bezieht sich nur auf den Spannungswert bei Wechselspannung (AC) als Leistungsspannung. Bei einem Netz Typ von DC hat die Eingabe hier bei Netzspannung keine Auswirkung.

DC-BUS max:

- Einstellgrenze für die obere Software-Spannungsgrenze bei Invertern mit analoger Zwischenkreismessung.
- Eingabe von **100** % = **32767 Num**
 - → 32767 Num / 2 = **16383 Num** berechnen und diesen Wert mit Gerätespannung vergleichen.
- Einstellwert für die Ansteuerung der Ballast-Schaltung (Servotyp abhängig).
- Warnung erfolgt bei 1,5 facher Nennspannung.
- Beim Überschreiten dieser Grenze erfolgt eine Fehlerabschaltung, der Regler wird gesperrt und der Fehler 8 wird ausgegeben.
- Die Hardware-Überspannungsüberwachung arbeitet unabhängig von der Software-Einstellung.

DC-BUS min:


- Einstellgrenze für die minimale Software-Spannungsgrenze bei Invertern mit analoger Zwischenkreismessung.
- Eingabe von **100** % = **32767 Num**
 - → 32767 Num / 2 = **16383 Num** berechnen und diesen Wert mit Geräte Spannung vergleichen
- Beim Unterschreiten dieser Grenze erfolgt eine Fehlerabschaltung, der Regler wird gesperrt und der Fehler 5 wird ausgegeben.
- Die Hardware-Unterspannungsüberwachung ist abhängig vom Servotyp und arbeitet unabhängig von der Software-Einstellung.

Hinweis / Wichtig:

- Die Ermittlung der Einstellwerte der Grenzen (Min, Max) aus der Hardware-Geräte-Beschreibung entnehmen.
- Die Einstellwerte der Grenzen beziehen sich nicht auf den Spannungswert in "Netzspannung" sondern auf die Servo spezifische Versorgungs-Nennspannung.

Beispiel: Bamocar 400-400 und Bamocar 700-400

DC-BUS-Spannung (Batteriespannung)

Normierung der DC-Bus Spannung:

Bamocar 400-400: $1V \triangleq 55.12044$ (Beispiel: $400 V \triangleq 22048 \text{ Num (0xEB)}$) Bamocar 700-400: $1V \triangleq 31.58483$ (Beispiel: $700 V \triangleq 22109 \text{ Num (0xEB)}$)

Einstellung der DC-BUS max (0xA5_H) und der DC-BUS min (0xA5_L) Grenzen:

(Die Einstellwerte der Grenzen beziehen sich nicht auf den Spannungswert in "Netzspannung" sondern auf die Inverterspezifische Versorgungs-Nennspannung)

Eingabe von **100 % = 32767 Num**

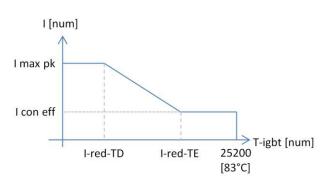
→ 32767 Num / 2 = **16363 Num** berechnen. Diesen Wert mit Geräte Spannungskurve vergleichen.

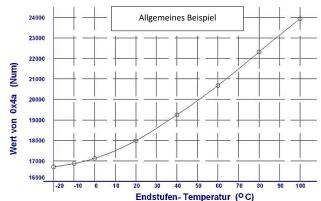
Bamocar 400-400: $1 \% = 163 \text{ Num} \approx 2,985 \text{ V}$ Bamocar 700-400: $1 \% = 163 \text{ Num} \approx 5,208 \text{ V}$

Einstellungen für BAMOCAR-PG-D3- 400/400				
DC-BUS max (0xA5 _H)	für Grenzspannung	Num 0xEB		
148 %	440 V	24252		
134 %	400 V	22048		
DC-BUS min (0xA5 _L)	für Unterspannung			
107 %	320 V	17638		
90 %	270 V	14882		

Einstellungen für BAMOCAR-PG-D3- 700/400			
DC-BUS max (0xA5 _H)	für Grenzspannung	Num 0xEB	
144 %	750 V	23688	
134 %	700 V	22109	
DC-BUS min (0xA5 _L)	für Unterspannung		
115 %	600 V	18950	
96 %	500 V	15792	

8.8 Einstellungen – Überwachung Endstufentemperatur


Parameter-Übersicht für die Einstellung der Stromreduzierung anhand der Endstufentemperatur


Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
l-red-TD	Startpunkt der Reduzierung der Stromgrenze	032767	Num	0x58
I-red-TE	Endpunkt der Reduzierung der Stromgrenze	032767	Num	0x4C
T-igbt	Gemessener Temperaturwert der Endstufe	032767	Num	0x4A

Bedingung:

- Nur bei Geräten mit analoger Erfassung der Endstufentemperatur kann die Software-Überwachung programmiert werden.
- Einstellwerte aus der Hardware-Geräte-Beschreibung entnehmen.

I-red-TD:

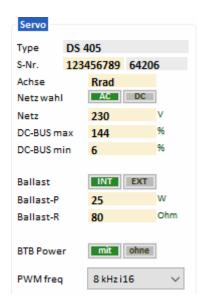
- Einstellwert für den Startpunkt der Reduzierung der Stromgrenze in Abhängigkeit der Entstufentemperatur.
- Die Stromgrenze wird bei steigender Endstufentemperatur linear bis zum eingestellten Endpunkt von I-red-TE bis auf die eingestellte Dauerstromgrenze abgesenkt.

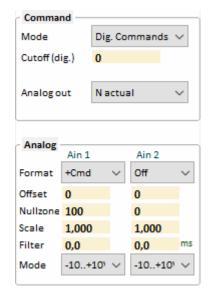
I-red-TE:

- Einstellwert für den Endpunkt der Endstufentemperatur bei der die Stromgrenze auf eingestellten Dauerstrom begrenzt wird.
- Bei 87 % der maximalen Endstufentemperatur wird die Warnung 7 (DEVICETEMP) ausgegeben.
- Die maximale Endstufentemperatur liegt bei 25200 Num (ca. 83 °C).
- Steigt die Endstufentemperatur (T-igbt) über den Wert von 25200, erfolgt eine Fehlerabschaltung vom Inverter und der Fehler 7 (DEVICETEMP) wird ausgegeben.

Die Hardware Endstufentemperatur-Überwachung arbeitet unabhängig von der Software-Einstellung.

- Für die Aktivierung Funktionalität des Derating über die Endstufentemperatur gilt
 - I-red-TD < I-red-TE
 - I-red-TD > 0
- → Die Aktivierung der Funktionalität wird als Ird-TI (0x40_{Bit 23}) im Statusfeld angezeigt.
- → Wird diese Strom Derating Funktionalität getriggert, wird als Ird-TIR (0x40_{Bit 24}) im Statusfeld angezeigt.


Hinweis:


Ist diese Derating Funktionalität anhand der Endstufentemperatur aktiviert, so ist die Strombegrenzung anhand der Funktion von **T-peak** (0xF0) deaktivert.

8.9 Einstellungen – Servo

Parameter-Übersicht auf der Seite Einstellungen im Hauptbereich Servo.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Туре	Geräte-Bezeichnung (protected)	0255	Num	0x67 _{Bit 70}
S-Nr.	Seriennummer Gerät (protected)	32 Bit - 1	Num	0x62
Achse	Achsen-Bezeichnung (frei beschreibbar)	4 Zeichen	ASCII	0xF8
Netz Typ	Auswahl der Leistungsspannung	AC / DC		0x5A _{Bit 19}
Netzspannung	Größe der Netz-Spannung	01000	V	0x64
DC-BUS max	Max. Spannungsgrenze vom DC Bus (Software)	0200	%	0xA5 _H
DC-BUS min	Min. Spannungsgrenze vom DC Bus (Software)	0200	%	0xA5∟
Ballast	Auswahl Ballastwiderstand	INT / EXT		0x5A _{Bit 1}
Ballast-P	Leistungswert Ballastwiderstand	2510000	W	0x65 _L
Ballast-R	Widerstandswert Ballastwiderstand	5100	Ohm	0х65 _н
BTB Power	BTB-Meldung mit oder ohne Zwischenkreis	mit / ohne		0x5A _{Bit 6}
	Unterspannungsüberwachung			
PWM freq	PWM Taktfrequenz	Auswahlfeld		0x5A _{Bit 2220}
Mode	Art der Sollwartevorgabe für die Drehzahl-	Auswahlfeld		0x36 _{Bit 1312}
(Command)	oder Momenten Befehle			
Cutoff (dig.)	Nullzone bei digitaler Sollwertvorgabe	032767	Num	0x1E
Analog out	Ausgabe Analogspannung in Relation zur	Auswahlfeld		0xDC
	zugeordneten Variable			
Format	Auswahl der Funktion der jeweiligen	Auswahlfeld		0x36 _{Bit 10}
	Analogeingänge			0x36 _{Bit 32}
Offset	Offsetkompensation der jeweiligen	±32767	Num	0x2F _L
	Analogeingänge			0xD7 _L
Nullzone	Nullzone der jeweiligen analogen	032767	Num	0x50
	Sollwertvorgaben			0x53
Scale	Skalierungsfaktor der jeweiligen	±7,999	Num	0x2F _н
	Analogeingänge			0xD7 _H
Filter	Filter der jeweiligen Analogeingänge	0127,5	Num	0x60
Mode	Eingangspegel Auswahl der jeweiligen	Auswahlfeld		0x36 _{Bit 54}
(Analog)	Analogeingänge			0x36 _{Bit 98}

Einstellungen

Zusätzliche Übersicht der Servo Nenndaten

Kurzz.:	Funktion:
Туре	Regler Typ wird angezeigt (Änderungen nur werksseitig möglich)
S-Nr.	Seriennummer wird angezeigt (Änderungen nur werksseitig möglich)
Achse	Achsenbezeichnung mit 4 ASCII Zeichen (Dies wird vom Anwender eingegeben)
Netz Typ	Leistungsanschluss AC~/DC= wird angezeigt.
	(Default Einstellung wird im Werk eingegeben)
Netzspannung	Wechsel- und Drehspannung AC (30° bis 480 V°)
	Batteriespannung oder Gleichstrom-Netz (12 V= bis 560 V=)
DC-BUS max.	Schaltpunkt Zwischenkreis Überspannung
	Fehler OVERVOLTAGE (Überspannung >1.8xU _N) 0x8F _{Bit 8}
DC-BUS min.	Schaltpunkt Zwischenkreis Unterspannung
	Fehler POWERVOLTAGE (Leistungsspannung fehlt) 0x8F _{Bit 5}
Ballast	Auswahlliste Ballastwiderstand (Intern – extern)
Ballast-P	Leistungs-Wert eingeben bei externem Ballastwiderstand Eingabe in Watt. Bei
	Überlastung des Ballastwiderstands wird eine Warnmeldung angezeigt.
	Warnung BALLAST (Ballastschaltung <87 %) 0x8F _{Bit 31}
Ballast-R	Widerstands-Wert eingeben bei externem Ballastwiderstand Eingabe in Ohm.
	Wichtig ist es auch den Minimalwert zu beachten.
BTB-Power	BTB-Meldung mit oder ohne Zwischenkreis Unterspannung:
	Auswahl ohne (BTB ohne Unterspannungsüberwachung) bei abgeschalteter Freigabe
	und abgeschalteter Leistungsspannung bleibt die RUN/BTB Meldung erhalten.
	Auswahl mit (BTB mit Unterspannungsüberwachung).
	Bei abgeschalteter Freigabe und abgeschalteter Leistungsspannung fällt RUN/BTB ab.

8.10 Einstellungen – Servo / PWM Taktfrequenz

Auswahl der Schaltfrequenz der Endstufe erfolgt über den Parameter **PWM freq** (0x5A_{Bit 22...20})

Auswahl (Allgemein):

Taktfrequenz gleicher Rechengeschwindigkeit

Werte: 8, 12, 16 kHz

Stromgrenzenreduzierung abhängig der Taktfrequenz:

2..8 kHz 100 % 12 kHz 85 % 16 kHz 70 %

Auswahl (Spezial):

Taktfrequenz (kHz) mit höhere Rechengeschwindigkeit (Ix).

Werte: 2 kHz-l4, 4 kHz-l8, 8 kHz-l16

Vorgang Änderung der Taktfrequenz:

- Freigabe muss deaktiviert sein
- Frequenz einstellen
- Parametersatz im Eprom Ebene O speichern
- Parametersatz vom Eprom Ebene 0 lesen
- Die geänderte Frequenz wird übernommen und die Stromgrenzen werden reduziert

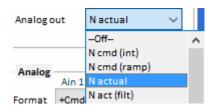
Empfehlung der Taktfrequenz abhängig der maximalen Motor-Drehzahl und -Polzahl:

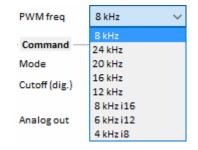
Für eine gute FOC Regelung empfiehlt es sich mindestens 16 Messpunkte für jeden elektrischen Winkel zu haben. Für einen Motor mit 20 Polen (10 Polpaaren) ergibt sich eine maximale Drehzahl:

Seite: 48

(16 kHz) 16000 Hz / 16 = 1000 Hz (\rightarrow maximale Drehfeldfrequenz) $n_{\text{max}} = (60 * 1000 \text{ Hz}) / 10 = 6000 \text{ rpm}$ (\rightarrow maximal empfohlene Drehzahl)

(12 kHz) 12000 Hz / 16 = 750 Hz (= fnom_max) n_max = (60 * 750 Hz) / 10 = 4500 rpm


(8 kHz) 8000 Hz / 16 = 500 Hz (= fnom_max) n_max = (60 * 500 Hz) / 10 = 3000 rpm


8.11 Einstellungen – Servo / Analoger Ausgang

Einstellung für die Definition der Ausgabe der analogen Ausgangsspannung erfolgt über das Auswahl von **Analog out** (0xDC).

Ausgabe der analogen Ausgangspannung:

- Die Ausgabebespannung ±10 V entspricht ±100 % vom ausgewählten Signal.
- Digitale binäre Signale liefern als Ausgang 0 oder +10 V

8.12 Einstellungen – Servo / Sollwert Befehlsmodus

Übersicht des Sollwert Befehlsmodus im Auswahl Parameter Mode bei Command

Kurzz.:	Funktion:	ID-Adresse:
		0x36 _{Bit1312}
Dig. Commands	Allgemeiner Sollwert Befehl über digitalen Kommunikations-Eingang (CAN-BUS, RS232)	0 dec
Analog Speed	Drehzahl Sollwert Befehl über analogen Spannungs-Eingang (AIN1 und AIN2)	2 dec
Analog Torque	Drehmoment (Iq) Sollwert über analogen Spannungs-Eingang (AIN1 und AIN2)	3 dec
Digi+Ana Speed	Drehzahl Sollwert über digitalen Kommunikations-Eingang und analogen Spannungs-Eingang. Die Summe beider Eingänge ergibt den Sollwert	1 dec

Dig. Commands:

Digitaler Positions-, Drehzahl- oder Strom- (Moment) Sollwertvorgabe. Sollwertvorgabe über eine der digitalen Kommunikationsschnittstellen (CAN; RS232).

Umschaltung zwischen den verschiedenen Arbeitszuständen (Position, Drehzahl, Strom) direkt nach Erhalt der neuesten Sollwertvorgabe.

Analog Speed:

Analoger Drehzahlsollwert

Eingabe an Klemmenleiste X1 → Eingänge Ain1 und Ain2

Maximale Eingangsspannung ±11 V entspricht ±32767 Num

Dieser Wert entspricht 100 % von der eingestellten 16 Bit Auflösung der maximalen physikalischen Drehzahl definiert in **N-100**% (0xC8).

Analog Torque:

Analoger Stromsollwert (Iq)

Eingabe an Klemmenleiste X1 → Eingänge Ain1 und Ain2

Maximale Eingangsspannung ±11 V entspricht ±32767 Num

Dieser Wert entspricht 100 % vom Servo Spitzenstrom I max pk (0xC4).

Digi+Ana Speed:

Drehzahlsollwert sowohl über die digitale Kommunikationsschnittstelle (CAN; RS232) als auch über die Vorgabe von Analog Speed. Die endgültige Sollwertvorgabe ist die Summe aus beiden Vorgaben mit einer internen Begrenzung von ±32767.

Dieser Wert entspricht 100 % von der eingestellten 16 Bit Auflösung der maximalen physikalischen Drehzahl definiert in **N-100**% (0xC8).

Tipps:

Drehrichtungsumkehr bei unipolarem Sollwert mit Richtungssignal:

Auf der Seite Logik einen digitalen Eingang mit **N cmd Reverse** zuweisen. Aktivierung entweder über einen echten Logikpegel am eingestellten Eingang oder über Änderung der Aktivierungsbedingung (AL / AH) über die digitalen Kommunikationsschnittstellen (CAN; RS232).

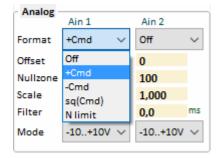
Seite: 49

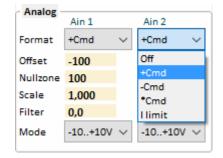
Sollwertvorgabe Speed auf 0 rpm überschreiben:

Gleich wie die Drehrichtungsumkehr jedoch einen digitalen Eingang mit Speed Ramp 0 zuweisen.

8.13 Einstellungen – Servo / Analoge Eingänge

Parameter-Übersicht für die Einstellung der Analogen Eingänge Ain1 und Ain2


Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
				Ain1 -
				Ain2 -
Format	Auswahl der Funktion der jeweiligen	Auswahlfeld		0x36 _{Bit 10}
	Analogeingänge			0x36 _{Bit 32}
Offset	Offsetkompensation der jeweiligen	±32767	Num	0x2F _L
	Analogeingänge			0xD7 _L
Nullzone	Nullzone der jeweiligen analogen	032767	Num	0x50
	Sollwertvorgaben			0x53
Scale	Skalierungsfaktor der jeweiligen	±7,999	Num	0x2F _н
	Analogeingänge			0xD7 _H
Filter	Filter der jeweiligen Analogeingänge	0127,5	Num	0x60
Mode	Eingangspegel Auswahl der jeweiligen	Auswahlfeld		0x36 _{Bit 54}
(Analog)	Analogeingänge			0x36 _{Bit 98}


Format:

Die Zuordnung der Analogeingänge Ain1 und Ain2 auf eine Funktion erfolgt im Feld Format.

Format: A	in1	ID-Adresse:
Off	Deaktiviert	$0x36_{Bit\ 10} = 0$
+Cmd	Sollwert Befehl normal	$0x36_{Bit 10} = 1$
-Cmd	Sollwert Befehl invertiert	$0x36_{Bit\ 10} = 2$
sq(Cmd)	Quadratischer Sollwert Befehl	$0x36_{Bit \ 10} = 3$
N limit	Drehzahlbegrenzung 0100 % über Ain1	0x36 _{Bit 15}
	(bei digitaler Sollwertvorgabe (Position, Drehzahl)). Dies entspricht 100 % der max. physikalischen Drehzahl definiert in N-100% (0xC8).	

Format: A	Ain2	ID-Adresse:
Off	Deaktiviert	$0x36_{Bit 32} = 0$
+Cmd	Sollwert Befehl normal (Ain2 wird zu Ain1 addiert)	$0x36_{Bit 32} = 1$
-Cmd	Sollwert Befehl invertiert (Ain2 wird zu Ain1 addiert)	$0x36_{Bit 32} = 2$
*Cmd	Sollwert Befehl normal (Ain2 wird mit Ain1 multipliziert)	$0x36_{Bit 32} = 3$
l limit	Strombegrenzung 0100 % über Ain2	0x36 _{Bit 14}
	(bei allen Sollwertvorgaben Digital, Analog).	
	Dies entspricht 100 % vom Geräte Spitzenstrom I max pk (0xC4).	

Einstellungen

Offset:

Kompensation vom Sollwert-Nullfehler bei analogem Eingang.

Bei anliegender 0 V Spannung den Offset- Wert so lange positiv oder negativ verändern, bis die Sollwertvorgabe bei **Ain skaliert** den Wert null anzeigt.

Nullzone:

Einstellbare Nullzone bei dem der unverarbeitete gemessene Wert von Ain1 und Ain2 auf 0 gesetzt wird. Stellt eine Sollwertvorgabe gleich 0 da in der Regel immer eine kleine Restspannung um 0 V an den Eingängen von Ain1 und Ain2 anliegt.

Sonderfälle:

Nullzone bei analogem Drehzahlsollwert:

Der Sollwert wird innerhalb dieser Zone intern auf 0 geschaltet. Der Antrieb steht still, kein Drift (kein Positionsparameter eingegeben).

Bei einem externen Drehmoment welches größer ist als die Servo-Stromgrenze kann der Antrieb aus der Null-Stellung gedreht werden.

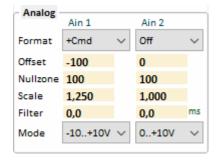
Nullzone bei analogem Drehzahlsollwert mit Positions-Haltewert:

Innerhalb der Nullzone wird der Antrieb mittels interner Positionsregelung auf seiner Nullposition gehalten. Bei einem externen Drehmoment welches größer ist als die Servo-Stromgrenze (I max pk) kann der Antrieb aus der Null-Stellung gedreht werden. Bei kleinerem Drehmoment kehrt der Antrieb in seine Nullposition zurück.

Achtung: Im Parameterfeld Position müssen die Parameter eingetragen sein.

Bei einem analogen Sollwert aus einer SPS/CNC Positionssteuerung sollte der Wert für die Nullzone sehr klein oder 0 sein.

Scale:


Skalierungsfaktor der jeweiligen analogen Eingangssignale. Hierdurch kann die ganze Breite der Eingangsspannungen (±11 V) auf dem ganzen Bereich der Endgültigen Sollwertvorgabe (±32767) angepasst werden. Dadurch kann auch der Gradient der Sollwertvorgabe variiert werden. (Eingangsspannungen größer als 11 V werden gekappt).

Mode:

Eingabebereich der analogen Sollwerte mit

-10..+10V bipolarer Sollwert 0..+10V unipolarer Sollwert

4..20mA Stromsollwert (externer Widerstand 500 Ohm) +1..+9V Sollwert mit Potentiometer Überwachung

Die Sollwertvorgabe von Ain1 und Ain2 nach der Skalierung wird in den Variablen Ain_{1,2} skaliert als Sollwert ausgegeben. Auf der Seite Drehzahl bei $Ain_{1,2}$ skaliert wird dies angezeigt.

Seite: 51

 $Ain_{1,2}$ skaliert = $(Ain_{1,2}$ ein + Offset_{1,2}) x Scale_{1,2}

8.14 Einstellungen – Speed / Lineare Rampenfunktion und Drehzahllimitierung


Parameter-Übersicht für die Einstellung der verschiedenen Rampenzeiten für die Drehzahl-, Momentenund Notstopprampen.

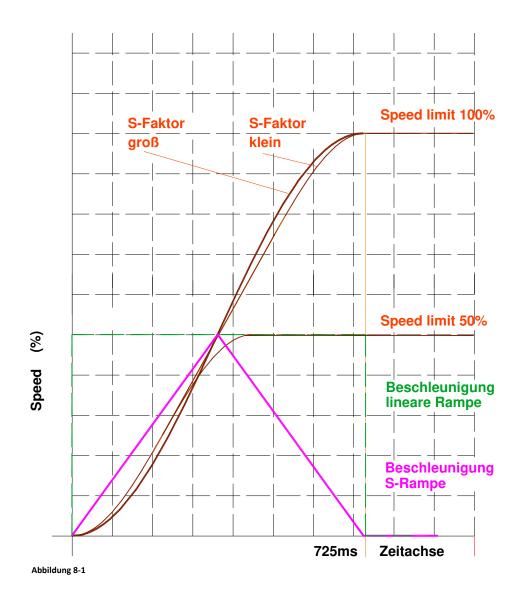
Funktion:	Bereich:	Einheit:	ID-Adresse:
Drehzahl – Beschleunigungsrampe	030000	ms	0x35∟
Drehzahl – Bremsrampe	030000	ms	0xED _L
Moment – Beschleunigungsrampe ¹	04000	ms	0х35 _н
Moment – Abbaurampe ¹	04000	ms	0xED _H
Moment – Rekuperationsrampe 1,2	04000	ms	0хC7 _н
Notstopp-, Endschalter-Rampe	01000	ms	0xC7∟
Physikalischer Referenzwert für die interne	10050000	rpm	0xC8
Auflösung der Drehzahl auf 16 Bit (±32767)			
Drehzahlbegrenzung für positive und negative	0100	%	0x34
Drehrichtung ³			
Drehzahlbegrenzung für positive Drehrichtung	0100	%	0x3F
(wenn Logik-Eingang N clip(neg&pos) aktiviert ist)			
Drehzahlbegrenzung für negative Drehrichtung	0100	%	0x3E
(wenn Logik-Eingang N clip(neg&pos) aktiviert ist)			
	Drehzahl – Beschleunigungsrampe Drehzahl – Bremsrampe Moment – Beschleunigungsrampe ¹ Moment – Abbaurampe ¹ Moment – Rekuperationsrampe ^{1,2} Notstopp-, Endschalter-Rampe Physikalischer Referenzwert für die interne Auflösung der Drehzahl auf 16 Bit (±32767) Drehzahlbegrenzung für positive und negative Drehrichtung ³ Drehzahlbegrenzung für positive Drehrichtung (wenn Logik-Eingang N clip(neg&pos) aktiviert ist) Drehzahlbegrenzung für negative Drehrichtung	Drehzahl – Beschleunigungsrampe Drehzahl – Bremsrampe O30000 Moment – Beschleunigungsrampe ¹ O4000 Moment – Abbaurampe ¹ O4000 Moment – Rekuperationsrampe ¹,² O4000 Notstopp-, Endschalter-Rampe O1000 Physikalischer Referenzwert für die interne Auflösung der Drehzahl auf 16 Bit (±32767) Drehzahlbegrenzung für positive und negative Drehrichtung ³ Drehzahlbegrenzung für positive Drehrichtung (wenn Logik-Eingang N clip(neg&pos) aktiviert ist) Drehzahlbegrenzung für negative Drehrichtung O100	Drehzahl – Beschleunigungsrampe Drehzahl – Bremsrampe O30000 Ms Moment – Beschleunigungsrampe 1 O4000 Ms Moment – Abbaurampe 1 O4000 Ms Moment – Rekuperationsrampe 1,2 Notstopp-, Endschalter-Rampe O1000 Physikalischer Referenzwert für die interne Auflösung der Drehzahl auf 16 Bit (±32767) Drehzahlbegrenzung für positive und negative Drehrichtung 3 Drehzahlbegrenzung für positive Drehrichtung (wenn Logik-Eingang N clip(neg&pos) aktiviert ist) Drehzahlbegrenzung für negative Drehrichtung O100 %

¹ Ab FW476 nur aktiv wenn es sich um eine Strom- (Momenten-) Vorgabe handelt.

- Für Drehzahlrampen (N R-Acc, N R-Dec, R-Lim) gilt als Referenz für die Zeitangabe der Wert für 100 % Sollwert definiert im Parameter N-100% (0xC8).
- Für Momentenrampen (M R-Acc, M R-Dec, M R-Rcp) gilt als Referenz für die Zeitangabe der Wert für 100 % Sollwert vom Geräte Spitzenstrom im Parameter I max pk (0xC4).
- Alle Rampen werden linear gebildet und erzeugen bei einer Drehzahlvorgabe eine konstante Beschleunigung.

N R-Acc	300	ms
N R-Dec	300	ms
R-Lim	1000	ms
M R-Acc	10	ms
M R-Dec	50	ms
M R-Rcp	1000	ms
N-100%	3000	RPM
N-lim	35	96
N-Lim+	100	96
N-lim-	-100	96

² Ab FW476 nur aktiv wenn bei digitaler Strom- (Momenten-) Vorgabe die ID (0xCD_{Bit 4} = 1) gesetzt ist


³ Bei Strom- (Momenten-) Vorgabe und N-Lim < 100 % ist Torque Tempomat aktiviert

S-Rampen-Funktion

Hinweis:

Noch nicht aktiv!

S-Rampen Funktion

Die lineare Zeitfunktion wird in eine S-förmige (sinus²) Funktion gewandelt. Die konstante Beschleungiung und Verzögerung ändert sich in eine stetige Änderung. Ruck- und Stromspitzen werden stark vermindert.

8.15 Einstellungen – BTB / RDY

BTB/RDY Meldung (Relaiskontakt)

Der BTB-Kontakt (Solid-State-Relais) ist bei betriebsbereitem Gerät geschlossen (Restwiderstand 30 Ohm), bei Fehler ist der BTB-Kontakt geöffnet (Widerstand > 1 M Ω).

Betriebsbereit BTB

Wird im Statusfeld mit **Rdy** (0x40_{Bit 14}) angezeigt.

Nicht betriebsbereit /BTB (Fehler)

Wird an der Front mit der roten LED FAULT angezeigt.

BTB und Leistungsspannung

Der Meldezustand bei abgeschalteter Leistungsspannung kann auf der Seite **Einstellungen** im Parameterfeld **Servo** mit **BTB-Power** gewählt werden (Unterspannungsüberwachung).

Auswahl BTB Power - "ohne"

BTB ohne Unterspannungsüberwachung. Bei abgeschalteter Freigabe und abgeschalteter Leistungsspannung bleibt die RUN/BTB Meldung erhalten.

Auswahl BTB Power - "mit"

BTB mit Unterspannungsüberwachung.

Bei abgeschalteter Freigabe und abgeschalteter Leistungsspannung fällt RUN/BTB ab.

Fehler Meldung und BTB/RDY:

Bei einem systemgefährlichen Fehler X (siehe Fehlerliste) wird die

- BTB-Meldung abgeschaltet.
 Der Servo wird intern ohne Verzögerung gesperrt und der Ausgang O_GO (0xE3) wird auf Low gesetzt.
- Am Servo:

Die Leuchtdiode FAULT leuchtet rot. Die 7 Segment Anzeige zeigt die Fehlernummer an.

• In NDrive:

Die Fehlerzustände werden im Feld Fehler angezeigt.

Die Fehlermeldungen werden zurückgesetzt beim:

- Einschalten der Regler-Freigabe RUN (FRG).
- Senden des Befehls Parameter Cancel Error über eine Kommunikationsschnittstelle.
- Triggern eines digitalen Eingangs der auf bei Seite Logik mit Cancel Error(s) programmiert ist.

9 Kommunikation (extern) mit Servo

9.1 Kommunikation (extern) mit Servo – CAN-Bus

Parameter-Übersicht der NDrive Seite Bus für die Kommunikationsschnittstelle CAN-Bus.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
NBT	CAN Übertragunsrate (siehe Liste)	00xFFFE	hex	0x73 _{Bit 110}
Rx ID	CAN ID – Empfangs-Adresse	00x7EE	hex	0x68
Tx ID	CAN ID – Sende-Adresse	00x7EE	hex	0x69
T-Out	CAN Timeout Zeit	060000	ms	0xD0
Achse	Achsen-Bezeichnung (frei beschreibbar)	4 Zeichen	ASCII	0xF8

Übertragungsrate NBT:	Einstellwert in NBT (0x73):	Leitungslänge max.:
1000 kBaud	0x4002	20 m
625 kBaud	0x4014	70 m
500 kBaud	0x4025 (Default)	70 m
250 kBaud	0x405C	100 m
125 kBaud	0x4325	100 m
100 kBaud	0x4425	100 m

Die Stations-Adressen für Emfangen und Senden und die Übertragungsrate werden im Parameterfeld **CAN-Bus** eingegeben.

Nach Änderungen in der CAN-Programmierung und Speicherung muss das Gerät neu gestartet werden → Hilfsspannung Aus- und Einschalten!

Default Einstellungen:

Empfangs-Adresse Rx ID = 0x201Sende-Adresse Tx ID = 0x181

Übertragungsrate NBT = 4025 (→ 500 kBaud)

Hinweis:

Für eine ausführliche Erläuterung der CAN Kommunikation bitte das CAN Manual von der UniTek Homepage downloaden.

Kommunikation (extern) mit Servo

9.2 Kommunikation (extern) mit Servo – RS232

9.2.1 RS232 Baudrate ändern

Die Einstellung der RS232 Baudrate erfolgt über die ID-Adresse 0x5A_{Bit 15}

0x5A_{Bit 15} 0 entspricht 115200 (Default)

0x5A_{Bit 15} 1 entspricht 9600

Die im Gerät gespeicherte Baudrate wird beim Einschalten der Hilfsspannung 24 V=, nach der Firmware-Versionsnummer, angezeigt.

bd0 entspricht 115200 bd1 entspricht 9600

Zuerst wird die Firmware-Version angezeigt (z.B. 4 - 7 - 8) Danach die Baudrate (z.B. b - d - 0)

9.2.2 Struktur des seriellen RS232 Protokolls

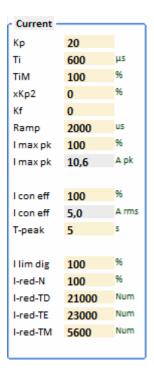
Darstellung der Struktur / Protokolls einer Nachricht über die Serielle RS232 Schnittstelle.

RS 23	RS 232 16 Bit										
Send	en vom	PC zum	Drive					Antw	Antwort Drive zum PC		
Char1	Char2	Char3	Char4	Char5	Char6	Char7		Byte 1	Byte 2		
RegID	RegID	Data	Data	Data	Data	Sync		Data	Data		
Bits	Bit s	Bits	Bits	Bits	Bits	"X"		Bits	Bits		
0704	0300	1512	1108	0704	0300			0704	0704		
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII		binary	binary		

RS 23	RS 232 32 Bit													
Send	Senden vom PC zum Drive									Antwo	rt Drive	zum P	Š	
Char1	Char2	Char3	Char4	Char5	Char6	Char7	Char8	Char9	Char10	Char11	Byte1	Byte2	Byte 3	Byte4
RegID	RegID	Data	Sync.	Data	Data	Data	Data							
Bits	Bits	Bits	Bits	Bits	Bits	Bits	Bits	Bits	Bits	"X"	Bits	Bits	Bits	Bits
0704	0300	3128	2724	2320	1916	1512	1208	0704	0300		0704	0704	0704	0704
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	binary	binary	binary	binary

Beispiel: Anfrage von Speed Actual (0x30)

Send	Senden vom PC zum Drive						Antwort Drive zum PC			
Char1	Char2	Char3	Char4	Char5	Char6	Char7		Byte 1	Byte 2	
RegID	RegID	Data	Data	Data	Data	Sync		Data	Data	
Bits 0704	Bits 0300	Bits 1512	Bits 1108	Bits 0704	Bits 0300	"X"		Bits 0704	Bits 0704	
3	D	0	0	3	0	Х		lo	hi	
	RegID read Speed Actual lesen (0x3D) Drehzahl Istwert (0x30)		ASCII		Wert vo	on 0x30				


10 Stromregelung

10.1 Stromregelung – Parameter-Übersicht

Parameter-Übersicht der Einstellungen für den Stromregler, sowie der allgemeinen erlaubten Stromgrenzen vom Servo-Gerät und der Grenzen für die Aktivierung von Derating Funktionen.

Hinweis:

Viele dieser Parameter sind auch auf den Seiten **Drehzahl** und **Oszilloskop** zu finden.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x1C
Ti	Nachstellzeit (Integrale Zeitkonstante)	37510000	ms	0x1D
TiM	Maximalwert vom Integral-Speicher Ti	0300	%	0x2B
xKP2	Proportionalverstärkung im Fall Ist Strom größer Stromgrenze	0, 100500	%	0xC9
Kf	Strom Vorsteuerung	0167	Num	0xCB
Ramp	Rampeneinstellung Sollstrom	125 ¹ 32000	μs	0x25
I max pk	Geräte Spitzenstrom [A]	0100	%	0xC4
I con eff	Geräte Dauerstrom [Arms]	0100	%	0xC5
T-peak ²	Erlaubte Überstromzeit oberhalb	140	S	0xF0
	Dauerstromgrenze (Abbau 5 mal länger)			
I limit (dig) ³	Stromreduzierung wenn Logik-Eingang I limit (dig.) aktiviert ist	0100	%	0x46
I-red-N	Stromreduzierung über die Ist-Drehzahl	0100	%	0x3C
I-red-TD	Start der Stromreduzierung über die Endstufentemperatur	032767	Num	0x58
I-red-TE	Ende der Stromreduzierung über die Endstufentemperatur	032767	Num	0x4C
l-red-TM	Start Stromreduzierung über die Motor-Temperatur	032767	Num	0xA2

¹ Abhängig PWM Taktfrequenz

 $^{^2}$ Nur aktiv wenn Stromreduzierung anhand der Endstufentemperatur nicht aktiviert ist (0x40_{Bit 23} (Ird-TI) = 0)

³ Referenz ist maximaler Geräte Spitzenstrom (I max pk (0xC4) = 100 %)

Stromregelung

10.1.1 Zusatzinformation der Parameter vom Stromregler

Der Stromregler ist ein klassischer PI-Regler \rightarrow Kp * (1 + 1/(Ti * s))

Kp Eingabe für die Proportionalverstärkung im Stromregler

Kp zu klein: Ausregelfehler, schlechte Dynamik, niederfrequente Schwingungen

Kp zu groß: Starke Motorgeräusche, hochfrequente Schwingungen

Empfohlen¹: 10..40 Num

Ti Integrations- Nachstellzeit im Stromregler

Hinweis: Ti abhängig der Proportionalverstärkung Kp

Ti zu groß: Niederfrequente Schwingungen

Ti zu klein: Hochfrequente Schwingungen, starke Schwingneigung

Empfohlen¹: 700..2500 ms

TiM Maximalwert vom Integral-Speicher Ti

TiM zu klein: Drehzahlvorgabe bei höherer Last wird nicht erreicht

Empfohlen¹: 80..100 %

xKp2 Neuer Verstärkungsfaktor (d.h. neuer Kp) zur Dämpfung der Strom-Istwert-Überschwinger oberhalb

Stromgrenze I lim inuse (0x48)

Hinweis: Nur aktivieren falls das System dies verlangt

xKp2 zu groß: Gefahr von Stromschwingungen Empfohlen¹: 0 (Deaktiviert) oder 100..120 %

Kf Vorsteuerung zur Kompensation der Ansprechverzögerung im Stromregler

Hinweis: Nur aktivieren falls das System dies verlangt

Kf zu groß: Gefahr von Stromschwingungen Empfohlen¹: 0 (Deaktiviert) oder 10..50 %

Ramp Stromanstiegsbegrenzung bzw. Rampenanstieg vom Sollstrom

Ramp zu groß: Gefahr von langwelligen Drehzahlschwingungen (Motor wird Instabil)

Empfohlen¹: 600..2500 μs

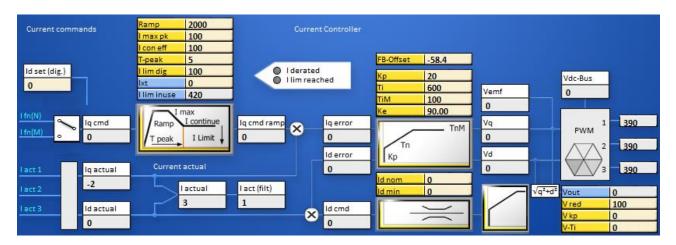
¹ Richtwerte anhand langjähriger Erfahrung entstanden.

Unterschiede abhängig vom System sind dennoch möglich.

Die Stromregel-Parameter können durch die Motordaten wie Wicklungsinduktität und Wicklungswiderstand bestimmt werden.

Achtung:

• Die Stromregler-Parameter dürfen nur von geschultem Fachpersonal geändert werden.


- Schlecht eingestellte Verstärkungsparameter können das Gerät oder den Antrieb beschädigen.
- Alle Einstellungen in ihrer Auswirkung mit dem NDrive-Oszilloskop überprüfen.

10.2 Stromregelung – Strukturbild

Das Strukturbild von der Stromregelung mit Eingabe- und Anzeigefenster der Reglerparameter ist auf der Seite **Drehzahl** für numerische Werte unter **Current Commands** und **Current Controller** dargestellt.

Strom-Sollwerte:	Funktion:	ID-Adresse:
I fn(N)	Drehzahlregler-Ausgang (Strom-Sollwert vom Drehzahlregler)	
I fn(M)	Torque-Sollwert nach Rampe	
	(Dig. Sollwert-Vorgabe vom Iq-Strom (M set(dig.))	
Id set (dig.)	Dig. Sollwert-Vorgabe vom Id-Strom (normiert wie M set(dig.))	0x21
Iq cmd	Wirkstrom (Iq) Sollwert (intern)	0x26
Iq cmd ramp	Wirkstrom (Iq) Sollwert (intern) nach Rampe und Begrenzung	0x22
Id cmd	Blindstrom (Id) Sollwert (intern)	0x23
Strom-Reglerwerte:		
Iq actual	Aktueller Wirkstrom (Iq)	0x27
Id actual	Aktueller Blindstrom (Id)	0x28
I actual	Aktueller Summenstrom (I)	0x20
I act (filt)	Aktueller Summenstrom nach Anzeigefilter	0x5F
Iq error	Regelfehler Wirkstrom (Iq)	0x38
Id error	Regelfehler Blindstrom (Id)	0x39
Spannungs-Werte:		
Vemf	Aktueller Vemf-Spannungsanteil (Vorsteuerung Gegen EMK)	0х29 _н
Vq	Aktueller Vq-Spannungsanteil	0x29 _L
Vd	Aktueller Vd-Spannungsanteil	0x2A _L
Vout	Aktuelle Ausgangsspannung	0x8A _L
Vdc-Bus	Messwert der Zwischenkreisspannung	0xEB
PWM 1	PWM Augabepegel Phase 1	0xAC
PWM 2	PWM Augabepegel Phase 2	0xAD
PWM 3	PWM Augabepegel Phase 3	0xAE
V-red	Feldschwäche Regelung - Spannungs-Referenzwert in % von Vout	0x8B
V-kp	Feldschwäche Regelung - Proportionalverstärkung im	0x8C
	Spannungsregler	
V-Ti	Feldschwäche Regelung - Nachstellzeit (Integrale Zeitkonstante)	0x8D

Stromregelung

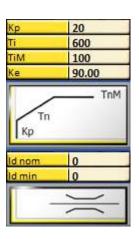
Einstellfeld Ramp auf der Seite Drehzahl.

Kurzz.:	Funktion:	ID-Adresse:
Ramp	Rampeneinstellung Sollstrom [μs]	0x25
I max pk	Geräte Spitzenstrom [A]	0xC4
I con eff	Geräte Dauerstrom [Arms]	0xC5
T-peak	Erlaubte Überstromzeit oberhalb	0xF0
	Dauerstromgrenze [s]	
I lim dig	Stromreduzierung in % wenn Logik-Eingang	0x46
	I limit (dig.) aktiviert ist	
lxt	Belastung	0x45 _H
I lim inuse	Aktuelle Stromgrenze (intern)	0x48

Ramp	2000
l max pk	100
I con eff	100
T-peak	5
l lim dig	100
lxt	0
I lim inuse	420
Ramp T peak	I Limit

Der Strom-Sollwert (I cmd) wird im Einstellfeld (Ramp) bearbeitet.

Der Stromanstieg (Ramp), der Spitzenstrom (I max pk), der Dauerstrom (I con eff) und die erlaubte Überstromzeit (T-peak) werden eingestellt.


Die zusammengefassten Stromreduzierungen durch Drehzahl, Strom und Temperatur werden bei I lim inuse angezeigt.

Bei reduziertem Strom leuchtet die LED I reduced.

Das Ergebnis der Stromsollwertbearbeitung wird im Anzeigefeld Stromsollwert nach Rampe (I cmd ramp) dargestellt.

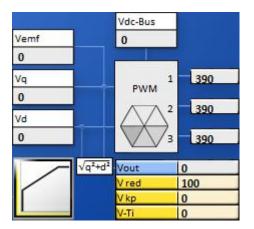
Einstellfeld Stromregler auf der Seite Drehzahl.

Funktion:	ID-Adresse:
Proportionalverstärkung [Num]	0x1C
Nachstellzeit (Integrale Zeitkonstante) [μs]	0x1D
Maximalwert vom Integral-Speicher Ti [%]	0x2B
Motor Ke Konstante (Gegen EMK)	0x87 _н
	Proportionalverstärkung [Num] Nachstellzeit (Integrale Zeitkonstante) [µs] Maximalwert vom Integral-Speicher Ti [%]

Einstellfeld Feldregelung auf der Seite Drehzahl.

Kurzz.:	Funktion:	ID-Adresse:
ld nom	Nominaler Magentisierungsstrom in % vom Motor- Nennstrom [%]	0xB2
ld min	Minimaler Magentisierungsstrom in % vom Motor- Nennstrom [%]	0xB5
V-red	Feldschwäche Regelung - Spannungs-Referenzwert in % von Vout [%]	0x8B
V-kp	Verstärkung Feldschwächung [Num]	0x8C
V-Ti	Nachstellzeit Feldschwächung [Num]	0x8D

Die Strom-Istwerte (I-Ist1, I-Ist2, I-Ist3) werden als Iq-actual und Id-actual ausgewertet. Der angezeigte Strom-Istwert I act (filt) wird mit einem Filter aus dem Strom-Istwert (I actual) gewonnen.


Im Stromregler werden die Iq und Id errors mit den Verstärkungs-Parametern (Kp, Ti, TiM) bearbeitet. Über die Vektor control Rückkopplung wird der Referenzwert für die Id Regelung gebildet.

Stromregelung

PWM-Anzeigefeld auf der Seite Drehzahl

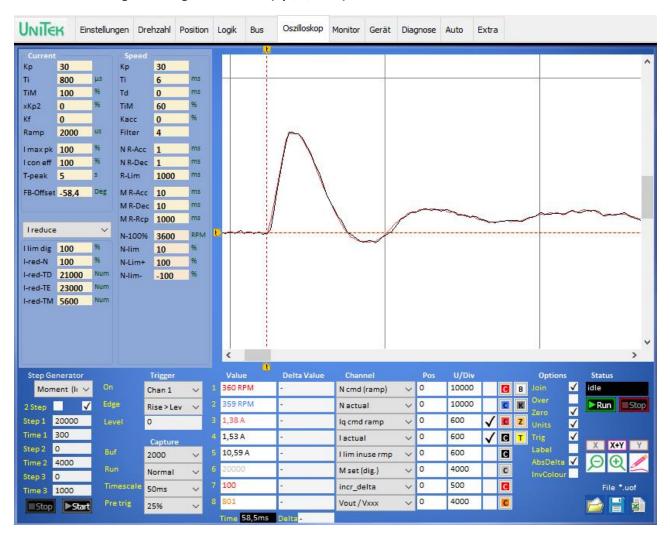
Kurzz.:	Funktion:	ID-Adresse:
Vemf	Aktueller Vemf-Spannungsanteil	0х29 _н
	(Vorsteuerung Gegen EMK)	
Vq	Aktueller Vq-Spannungsanteil	0x29 _L
Vd	Aktueller Vd-Spannungsanteil	0x2A _L
Vout	Aktuelle Ausgangsspannung	0x8A _L
Vdc-Bus	Messwert der	0xEB
	Zwischenkreisspannung	
PWM1	Pulsweitenmodulation Phase 1	0xAC
PWM2	Pulsweitenmodulation Phase 2	0xAD
PWM3	Pulsweitenmodulation Phase 3	0xAE

Aus den Stromreglerausgangsignalen Vemf, Vq und Vd werden die PWM-Impulse für die Endstufen-Schaltung gebildet.

10.2.1 Umrechnung der Maßeinheiten für den Strom

Die numerischen Werte für den Nennstrom müssen bei der digitalen Kommunikation über RS232 oder CAN-BUS beachtet werden.

Im Track-Feld werden die numerischen Werte angezeigt.


$$i = RegID[0xNN] * \frac{1}{5} * \frac{RegID[0xC6]}{RegID[0xD9]} A_{rms}$$

Hinweis:

- 0xD9 und 0xC6 sind festgelegte definierte geräteabhängige Werte.
- Die physikalische Werte (wenn vorhanden) werden im Ndrive Oszilloskop in A angezeigt.

10.2.2 Einstellung Stromregler-Paramter (Kp ,Ti, TiM)

Die Einstellung vom Stromregler ist stark von den Eigenschaften des Gesamtsystems und vor allem von den Eigenschaften des verwendeten und meist unbekannten Motors abhängig.

Umrichter sind generell keine Plug and Play Systeme. Eine besondere genauere Betrachtung des Verhaltens bei der Stromregelung ist von entscheidender Bedeutung für einen sicheren und ruhigen Betrieb.

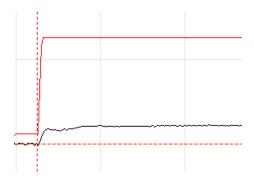
Voraussetzung:

- Umgang mit dem NDrive Oszilloskop (Signale "I cmd ramp" und "I actual" als Messkanal).
- Der Motor sollte entweder Freilaufend sein oder an einer konstanter Last anliegen.
- Eine stabile RS232 Kommunikation um einen digitalen Sollwert vorzugeben und mit dem NDrive Oszilloskop Aufwzeichnungen zu machen.
- Die Stromregler-Parameter dürfen nur von Fachpersonal geändert werden.

Hinweis:

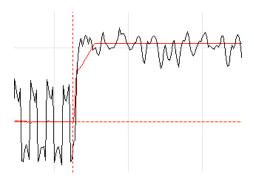
Die folgende Einstellung vom Stromregler konzentriert sich auf den allgemeinen ersten Sprung von Sollund Istwert. Bei hohen Drehzahlen und in der Nähe der Spannungsgrenze müssen eventuell Korrekturen vorgenommen werden.

Stromregelung

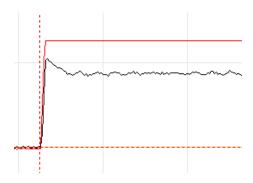

Einstellung Kp-Wert:

- Entfernen vom Integralanteil (TiM = 0 %)
- Schnelle Drehzahlrampen (N R-Acc = 10..100 ms)
- Trigger im NDrive Oszilloskop auf Kanal 1 (N cmd (ramp)), Rise > Lev 100 stellen
- Oszilloskop Aufzeichnung starten, Drehzahlsollwert (Bsp.: 10000) senden, Motor stoppen, Oszilloskop Aufzeichnung analysieren.

Seite: 63


Kp-Wert zu klein

- 1. Differenz zwischen Strom-Sollwert (I cmd (ramp)) und Strom-Istwert (lactual) zu groß
- 2. Bei hohen Drehzahlen wird das maximale Drehmoment nicht erreicht

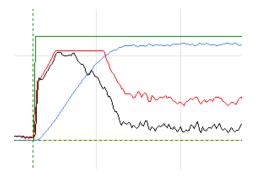

Kp-Wert zu groß

- 1. Strom-Istwert schwingt über den Strom-Sollwert
- 2. Rauher Lauf und hochfrequente Motorgeräusche

Kp-Wert gut

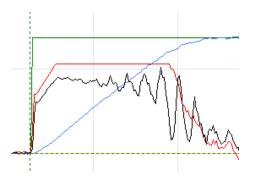
- 1. Strom-Istwert schwingt nicht
- 2. Differenz zwischen Strom-Sollwert und Strom-Istwert ist gering (Optimal: Regelfehler < 5 %)

Stromregelung



Einstellung Ti und TiM-Wert:

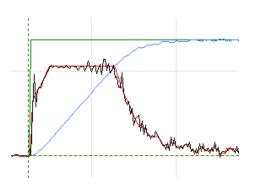
- Ermittelten KP-Wert beibehalten
- Hinzufügen vom Integralanteil (TiM ≠ 0 %, Ti ≠ 0 μs)
- Schnelle Drehzahlrampen (N R-Acc = 10..100 ms)
- Trigger im NDrive Oszilloskop auf Kanal 1 (N cmd (ramp)), Rise > Lev 100 stellen
- Oszilloskop Aufzeichnung starten, Drehzahlsollwert (Bsp.: 10000) senden, Motor stoppen, Oszilloskop Aufzeichnung analysieren.


TiM zu klein

- 1. Die Soll-Drehzahl (grün) wird bei höherer Last trotz ausreichend hohem Soll-Strom (rot) nicht erreicht
- 2. Es Fehlt die Stellgröße der Ausgangsspannung
- 3. Empfehlung: 80..100 %

Ti zu groß

- 1. Regelfehler wird kaum oder zu langsam ausgeglichen
- 2. Langwelliges Schwingen möglich



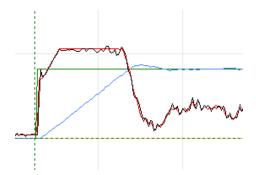
Ti zu klein

- 1. Großer und schneller Überschwinger beim ersten Sollsprung
- 2. Kurzwelliges Schwingen möglich

Hinweis:

Da Ti von Kp abhängt, beinflusst eine nachträgliche Anpassung von Kp das Verhalten des Integralanteils.

Kp und Ti gut Eingestellt


 Schnelle Regelung vom schnellen Sollsprung ohne großen Überschwinger sowie schnelle Korrektur bei Sollwertänderung

Seite: 64

2. Kein kurz oder langwelliges Schwingen

Hinweis:

- Bei schnellen Lastwechseln oder im Bereich der Spannungsgrenze kann das System instabil werden
- Motortyp und EMV Einflüsse wirken stark auf das Regelverhalten mit ein

11 Stromreduzierung (Derating)

11.1 Stromreduzierung – Übersicht und Erläuterung

Die im Betrieb erlaubten Stromgrenzen von Spitzen- und Dauerstrom werden anhand der eingestellten Werte vom Motor und Servo bestimmt. Hierbei gilt die Regel, dass der kleinere Wert der jeweiligen Spitzen- und Dauerströme die Begrenzungen im laufenden Betrieb bestimmt.

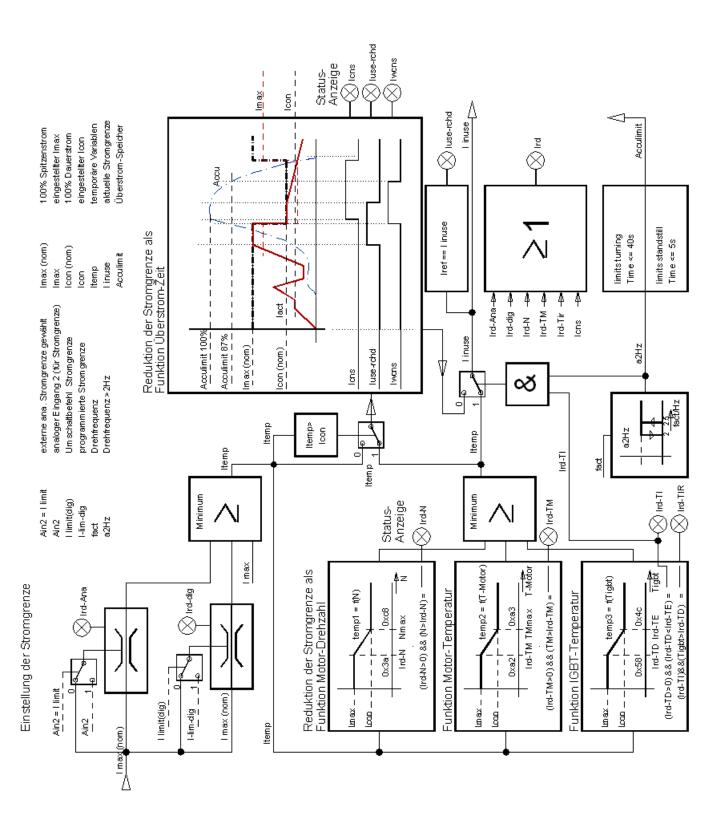
	Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Motor	I max eff	Motor-Maximalstrom	01000.0	Arms	0x4D
	I nom eff	Motor-Dauerstrom	01000.0	Arms	0x4E
Servo	I max pk	Geräte Spitzenstrom [A]	0100	%	0xC4
	I con eff	Geräte Dauerstrom [Arms]	0100	%	0xC5

11.1.1 Stromreduzierung – Übersicht

Parameter-Übersicht der verschiedenen einstellbaren Deratingsoptionen.

Bei der Stromreduzierung (Derating) von erlaubtem Spitzenstrom auf erlaubtem Dauerstrom, kann zwischen Statischer (Fix Wert) oder Dynamischer (Funktion) Stromreduzierung unterschieden werden.

T-peak	5	S
I lim dig	100	96
I-red-N	100	96
I-red-TD	21000	Num
I-red-TE	23000	Num
I-red-TM	5600	Num


Derating:	Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Zeit ³	T-peak	Überstrom-Zeitfunktion	140	S	0xF0
Digitaler	I lim dig	Stromreduzierung in % wenn Logik-	0100	%	0x46
Eingang ¹		Eingang I limit (dig.) aktiviert ist			
Drehzahl-	I-red-N	Überstrom-Drehzahlfunktion	032767	Num	0x3C
Istwert ¹					
Endstufen-	I-red-TD	Startpunkt der Reduzierung durch	032767	Num	0x58
Temperatur		Endstufentemperatur auf Dauerstrom			
(Start) ²					
Endstufen-	I-red-TE	Endpunkt der Reduzierung durch	032767	Num	0x4C
Temperatur		Endstufentemperatur auf Dauerstrom			
(Ende) ²					
Motor-	I-red-TM	Reduzierung durch Motortemperatur	032767	Num	0xA2
Temperatur ²					
Motor-	M-Temp	Reduzierung ab 93 % von M-Temp	032767	Num	0xA3
Temperatur ²					
n < 10 Hz ²		Reduzierung auf Dauerstrom wenn			
		Motordrehzahl kleiner 10 Hz ist			
Analog		Ain 2 ist auf I limit eingestellt. Ain 2	032767	Num	0хD6н
Eingang ¹		bestimmt erlaubten Spitzenstrom			
1 Statischo Poduzion	una				

¹ Statische Reduzierung

² Dynamische Reduzierung

³ Statische Reduzierung mit dynamischer Berechnung

Seite: 66

Hinweis: Namen können leicht abweichen.

Stromreduzierung (Derating)

11.1.2 Stromreduzierung – Erläuterung

Allgemein gilt das wenn der Soll-Strom das momentan erlaubte Strom-Limit erreicht, wird dies mit der Meldung im Statusfeld 0x40_{Bit 21} (**luse-rchd**) angezeigt.

T-peak:

Bei einem verwendeten Strom größer als der erlaubte Dauerstrom, startet eine Berechnung die abhängig des Deltas der Überschreitung eine zeitliche Berechnung durchführt. Die Ermittlung ist somit dynamisch. Enspricht die dynamische zeitliche Berechnung dem eingestellten Wert von **T-peak** (0xF0), wird die Stromgrenze auf Dauerstrom reduziert. Ist die zeitliche Berechnung bei 87,5 % von T-peak wird im Statusfeld 0x40_{Bit 28} (Iwcns) gesetzt.

Ist der Strom kleiner als der erlaubte Dauerstrom wird der Zeitspeicher wieder abgebaut. Die Rückstellzeit ist gleich 2 mal T-peak.

Hinweis: Diese Stromreduzierung anhand der Zeit ist nur aktiviert, wenn die Stromreduzierung anhand der Endstufentemperatur deaktiviert ist (I-red-TD = 0 oder I-red-TD).

○ Die Aktivierung der Funktion von T-peak wird über das Statusfeld 0x40_{Bit 23} (Ird-TI) = 0 angezeigt.

I lim dig:

Auf der Seite Logik kann ein digitaler Eingang auf I lim (dig) programmiert werden.

Wird dieser Eingang aktiviert oder ein CAN-Befehl für diesen Eingang empfangen, so wird die Stromgrenze auf den Wert des Parameters I lim dig (0x46) reduziert.

Derating Aktiv: Statusfeld 0x40_{Bit 20} (Ird-Dig)

I-red-N:

Ab der im Parameter **I-red-N** (0x3C) eingegebenen Drehzahl wird die Stromgrenze linear reduziert. Bei Nenndrehzahl entspricht die Stromgrenze dem Dauerstrom.

Derating Aktiv: Statusfeld 0x40_{Bit 22} (Ird-N)

I-red-TD & I-red-TE:

Überschreitet die Endstufentemperatur den Wert von **I-red-TD** (0x58) wird die Stromgrenze linear reduziert, die Meldung im Statusfeld 0x40_{Bit 24} wird angezeigt und die Warnung 7 (DEVICETEMP) wird gesetzt.

Ist der Wert von I-red-TE (0x4C) erreicht, wird die Stromgrenze auf den erlaubten Dauerstrom reduziert.

- Aktivierungsbedingung: (I-red-TD < I-red-TE) und (I-red-TD > 0)
- Funktion Aktiv: Statusfeld 0x40_{Bit 23} (Ird-Ti)
- Derating Aktiv: Statusfeld 0x40_{Bit 24} (Ird-TiR)

Bei einer Endstufentemperatur größer 25200 Num (83°C) erfolgt eine Notabschaltung und der Fehler 7 (DEVICETEMP) wird gesetzt

I-red-TM:

Überschreitet die Motortemperatur den Wert von **I-red-TM** (0xA2) wird die Stromgrenze linear reduziert, die Meldung im Statusfeld 0x40_{Bit 26} (Ird-TM) und die Warnung 6 (MOTORTEMP) wird gesetzt.

Steigt die Temperatur weiter an so wird die Stromgrenze weiter linear reduziert bis der Wert vom **M-Temp** (0xA3) erreicht wird. Dann erfolgt eine Notabschaltung und der Fehler 6 (MOTORTEMP) wird gesetzt.

Seite: 67

Achtung:

Die Warnmeldungen im Status müssen berücksichtigt werden. Bei reduzierten Stromgrenzen können Funktionsfehler in der Maschine oder Anlage auftragen.

Stromreduzierung (Derating)

11.1.3 Stromreduzierung – Statusanzeige

Übersicht der Signale im Statusfeld (0x40) zu den Funktionen der Stromreduzierung.

Signal:	Derating Funktion:	Beschreibung der Signale:	ID-Adresse: 0x40
Icns		Stromgrenze ist reduziert auf Dauerstrom	Bit 5
Ird-dig	Digitaler Eingang	Stromgrenze ist wegen I lim dig reduziert	Bit 20
Iuse-rchd		Strom-Sollwert ist an der erlaubten Stromgrenze	Bit 21
Ird-N	Drehzahl- Istwert	Stromgrenze ist wegen I-red-N reduziert	Bit 22
Ird-Ti	Endstufen- Temperatur	Funktion der Stromreduzierung auf Grund der Endstufentemperatur ist aktiviert (→ T-peak deaktiviert)	Bit 23
Ird-TiR	Endstufen- Temperatur	Stromreduzierung auf Grund der Endstufentemperatur ist aktiv	Bit 24
Ird-10Hz	Drehzahl- Istwert	Stromreduzierung bei einer Drehfeldfrequenz kleiner 10 Hz → Blockierschutz ¹	Bit 25
Ird-TM	Motor- Temperatur	Stromgrenze ist wegen I-red-TM oder M-Temp (93 %) reduziert	Bit 26
Ird-Ana	Analog Eingang	Stromgrenze ist wegen Ain2 (I limit) kleiner als die eigentliche Stromgrenze reduziert	Bit 27
lwcns	Zeit	Das dynamische Zeitlimit ist auf 87,5 % von T-peak geladen	Bit 28

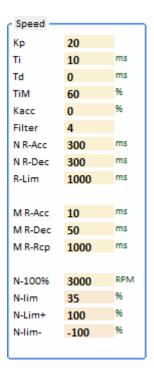
Messwerte (Monitor)		ID-Adresse:
T-motor	Aktuelle Motortemperatur	0x49
T-igbt	Aktuelle Endstufentemperatur	0x4A
T-air	Aktuelle Lufttemperatur im Servo	0x4B
I lim inuse	Aktuelle Stromgrenze (intern)	0x48

¹ Blockierschutz:

Bei einer Drehfeldfreuquenz kleiner 10 Hz muss die Stromgrenze auf den erlaubten Servo-Dauerstrom reduziert werden. Dies ist wichtig um den Servo zu schützen.

Auf eigene Gefahr kann dieser Blockierschutz durch eine automatische Umschaltung auf eine PWM Taktfrequenz auf 4 kHz unterhalb einer Drehfeldfreuquenz von 10 Hz deaktiviert werden:

- ID-Adresse 0x5A_{Bit 31} = 0 Blockierschutz aktiviert (Stromgrenze wird reduziert)
- o ID-Adresse 0x5A_{Bit 31} = 1 Blockierschutz deaktiviert (Taktfrequenz auf 4 kHz umgeschaltet)


12 Drehzahlregelung

12.1 Drehzahlregelung – Parameter-Übersicht

Parameter-Übersicht der Einstellungen für den Drehzahlregler sowie der allgemeinen erlaubten Drehzahlgrenzen.

Hinweis:

Viele dieser Parameter sind auch auf den Seiten **Drehzahl** und **Oszilloskop** zu finden.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x2C
Ti	Nachstellzeit (Integrale Zeitkonstante)	010000	ms	0x2D
Td	Vorhaltezeit	0100	ms	0x2E
TiM	Maximalwert vom Integral-Speicher Ti	0100	%	0x3B
Kacc	Proportionalverstärkung - Delta Beschleunigung	0100	%	0x5B
Filter	Filter Drehzahl-Istwert	010	Num	0x5E
N R-Acc	Drehzahl – Beschleunigungsrampe	030000	ms	0x35∟
N R-Dec	Drehzahl – Bremsrampe	030000	ms	0xED _L
R-Lim	Notstop, Endschalter-Rampe	01000	ms	0xC7∟
M R-Acc	Moment – Beschleunigungsrampe	04000	ms	0x35 _н
M R-Dec	Moment – Abbaurampe	04000	ms	0xED _H
M R-Rcp	Moment – Rekuperationsrampe (0xCD _{Bit 4})	04000	ms	0хС7 _н
N-100%	Physikalischer Referenzwert für die interne Auflösung der Drehzahl auf 16 Bit (±32767)	10050000	rpm	0xC8
N-Lim	Drehzahlbegrenzung für positive und negative Drehrichtung	0100	%	0x34
N-Lim+	Begrenzung für positive Drehrichtung (wenn Logik-Eingang N clip(neg&pos) aktiviert ist)	0100	%	0x3F
N-Lim-	Begrenzung für negative Drehrichtung (wenn Logik-Eingang N clip(neg&pos) aktiviert ist)	0100	%	0x3E

Drehzahlregelung

12.1.1 Zusatzinformation der Parameter vom Drehzahlregler

Kp Eingabe für die Proportionalverstärkung im Drehzahlregler

Kp zu klein: Ausregelfehler, schlechte Dynamik, niederfrequente Schwingungen

Kp zu groß: Starke Motorgeräusche, hochfrequente Schwingungen

Empfohlen¹: 5..50 Num

Ti Integrations- Nachstellzeit im Drehzahlregler

Hinweis: Ti abhängig der Proportionalverstärkung Kp

Ti zu groß: Niederfrequente Schwingungen, große Drehzahl-Überschwinger, sehr Schwach

Ti zu klein: Hochfrequente Schwingungen, starke Schwingneigung

Empfohlen¹: 6..400 ms

TiM Maximalwert vom Integral-Speicher Ti

TiM zu klein: Drehzahlvorgabe bei höherer Last wird nicht erreicht

Empfohlen¹: 20..60 %

Td Differenzial- Zeitkonstante im Drehazhlregler

Hinweis: Nur aktivieren falls das System dies Verlangt

Td zu groß: hochfrequente Schwingungen, starke Schwingneigung

Empfohlen¹: 0 (Deaktiviert) oder 6..20 ms

Kacc Dynamischer Beschleunigungswert direkt auf den Stromregler

Hinweis: Nur aktivieren falls das System dies Verlangt

Kacc zu groß: Gefahr von Stromschwingungen Empfohlen¹: 0 (Deaktiviert) oder 10..50 %

Filter zu klein: Motorgeräusche, hochfrequente Schwingungen, starke Schwingneigung

Seite: 70

Filter zu groß: niederfrequente Schwingungen

¹ Richtwerte anhand langjähriger Erfahrung entstanden. Unterschiede abhängig vom System sind dennoch möglich.

Drehzahlregelung

12.1.2 Zusatzinformation der Drehzahl-Sollwert-Rampen im Drehzahlregler Betrieb

Der Drehzahl-Sollwert in N cmd (int) (0x5D) wird entsprechend der Rampeneinstellungen angepasst und stellt den finalen Drehzahl-Sollwert in N cmd (ramp) (0x32) an den Drehzahlregler.

N R-Acc Beschleunigungrampe für Drehzahl- und Positionssollwert

Parameter Wert entspricht immer der Zeit von 0 rpm bis der Referenz von N-100%.

N R-Dec Bremsrampe für Drehzahl- und Positionssollwert

Parameter Wert entspricht immer der Zeit von 0 rpm bis der Referenz von N-100%.

(bei Positionsregelung auf < 10 ms stellen)

R-Lim Minimale Bremsrampe bei Endschalter und Notstop

Bei Drehzahlregelung nur aktiv wenn Freier Auslauf deaktiviert ist.

(kann für Referenzfahrt gewählt werden)

M R-Acc M R-Dec

M R-Rcp Diese Einstellungen der Strom-Rampen sind bei der Drehzahlregelung nicht aktiv.

Sie sind nur bei der Torqueregelung aktiv.

Bei der Drehzahlregelung ist nur die Strom-Rampen Berechnung anhand des Parameters

Ramp (0x25) aktiv.

12.1.3 Zusatzinformation der Drehzahl-Sollwert-Limitierung im Drehzahlregler Betrieb

N-100% Physikalischer Referenzwert für die interne Auflösung der Drehzahl auf 16 Bit (±32767).

Diesen Wert immer auf Maximale Motordrehzahl stellen.

Wenn die Drehzahl auf einen kleineren Wert begrenzt werden soll,

bitte den Parameter N-Lim (0x34) verwenden.

N-Lim Drehzahlbegrenzung in % für positive und negative Drehrichtung abhängig vom

Referenzwert in N-100% (0xC8).

Bei einer Strom-Vorgabe (Torqueregelung) und N-Lim < 100 % ist der Torque Tempomat

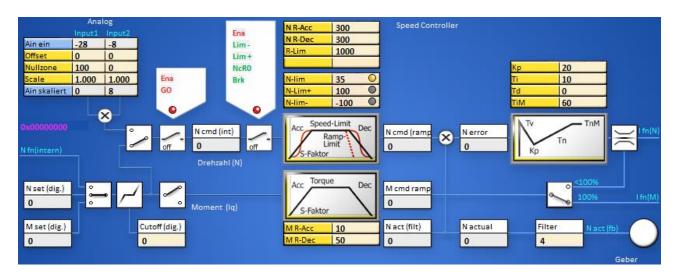
(Drehzahlbegrenzung) aktiviert.

N-Lim+ Drehzahlbegrenzung in % für positive Drehrichtung abhängig vom Referenzwert in

N-100% (0xC8).

→ Aktiv nur wenn ein Logik-Eingang auf N clip(neg&pos) eingestellt und aktiviert ist. Sonderfunktion: Stromgrenze für automatische Rekuperation bei Torqueregelung

N-Lim- Drehzahlbegrenzung in % für negativ Drehrichtung abhängig vom Referenzwert in


N-100% (0xC8).

→ Aktiv nur wenn ein Logik-Eingang auf N clip(neg&pos) eingestellt und aktiviert ist. Sonderfunktion: Stromgrenze für automatische Rekuperation bei Torqueregelung

12.2 Drehzahlregelung - Strukturbild

Das Strukturbild von der Drehzahlregelung mit Eingabe- und Anzeigefenster der Reglerparameter ist auf der Seite **Drehzahl** für numerische Werte unter **Analog, Drehzahl** und **Speed Controller** dargestellt.

Drehzahl- und Wirkstrom (Iq) Sollwerte:		Funktion:	ID-Adresse:
Ain ein	IN1 / IN2	Analog-Eingang 1 und 2	0xD5 _L / 0xD6 _L
Offset	IN1 / IN2	Offsetkompensation der jeweiligen Analogeingänge	0x2F _L / 0xD7 _L
Nullzone	IN1 / IN2	Nullzone bei analoger Sollwertvorgabe	0x50 / 0x53
Scale	IN1 / IN2	Skalierungsfaktor der jeweiligen Analogeingänge	0x2F _H / 0xD7 _H
Ain skaliert	IN1 / IN2	Analoge Sollwert-Vorgabe der Eingänge Ain1 und Ain2	0xD5 _H / 0xD6 _H
N set (dig.)		Digitale Sollwert-Vorgabe der Drehzahl	0x31
M set (dig.)		Digitale Sollwert-Vorgabe vom Wirkstrom (Iq)	0x90
Cutoff (dig.)		Nullzone bei digitaler Sollwertvorgabe	0x1E
Drehzahl-Re	glerwerte:		
N cmd (int)	(int) Verwendeter Drehzahl-Sollwert (intern)		0x5D
N cmd (ramp	nd (ramp) Drehzahl-Sollwert nach Rampe		0x32
N actual		Drehzahl-Istwertsignal für die Regelung	0x30
N act (filt)		Drehzahl-Istwertsignal für die Anzeige	0xA8
N error		Regelfehler Drehzahl-Istwert	0x33
M cmd ramp)	Wirkstrom (Iq)-Sollwert nach Rampe (skaliert)	0x3A _L

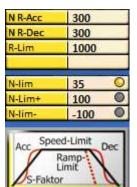
Einstellfeld Analog auf der Seite Drehzahl.

Kurzz.:	Funktion:	Input1	Input2
		(Ain1)	(Ain2)
Ain ein	Analog-Eingang 1 und 2	0xD5 _L	0xD6 _L
Offset	Offsetkompensation der jeweiligen	0x2F _L	0x2F _L
	Analogeingänge		
Nullzone	Nullzone bei analoger Sollwertvorgabe	0x50	0x53
Scale	Skalierungsfaktor der jeweiligen	0x2F _H	0xD7 _H
	Analogeingänge		
Ain skaliert	Analoge Sollwert-Vorgabe der Eingänge	0xD5 _H	0хD6 _н
	Ain1 und Ain2		
	(Ain skaliert = (Ain ein + Offset) x Scale)		

	Ana Input1	log Input2
Ain ein	-28	-8
Offset	0	0
Nullzone	100	0
Scale	1.000	1.000
Ain skaliert	0	8

Bei **Ain ein_{1,2}** werden die gemessenen analogen Eingangswerte von Input1 und Input2 angezeigt. Diese Signale werden mit den Parametern Offset_{1,2}, Nullzone_{1,2} und Scale_{1,2} bearbeitet. Das Ergebnis wird in **Ain skaliert_{1,2}** angezeigt.

Über die Wahlschalter wird zwischen analogem und digitalem Sollwert gewählt. Sind beide Schalter geschlossen so wird der digitale und analoge Sollwert addiert. Der Summenwert bei N cmd (int) ist intern auf ±32767 begrenzt.


Die digitalen Sollwerte können als digital Speed (N set (dig.)), digital Torque (M set (dig.)) oder vom Positionsregler direkt über N fn(intern) vorgegeben werden.

Signale:	Funktion grün:
Ena	Freigabe Hardware / Software
GO	Interne Freigabe (Endstufe)
Lim-	Endschalter Minus
Lim+	Endschalter Plus
NcRO	Sollwert Null
Brk	Bremse

Einstellfeld Drehzahl Rampe auf der Seite Drehzahl.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
N R-Acc	Drehzahl – Beschleunigungsrampe	030000	ms	0x35 _L
N R-Dec	Drehzahl – Bremsrampe	030000	ms	0xED _L
R-Lim	Notstop, Endschalter-Rampe	01000	ms	0xC7∟

Einstellfeld Sollwert-Begrenzungen auf der Seite Drehzahl.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
N-Lim	Drehzahlbegrenzung für positive	0100	%	0x34
	und negative Drehrichtung			
N-Lim+	Begrenzung für positive	0100	%	0x3F
	Drehrichtung (wenn Logik-Eingang			
	N clip(neg&pos) aktiviert ist)			
N-Lim-	Begrenzung für negative	0100	%	0x3E
	Drehrichtung (wenn Logik-Eingang			
	N clip(neg&pos) aktiviert ist)			

Drehzahlregelung

Schaltfeld 1:

Der Drehzahl-Sollwert wird nur bei Freigabe (Ena) und interner Freigabe (GO) weitergeschaltet (grün) und im Anzeigefeld Drehzahl-Sollwert (N cmd (int)) dargestellt.

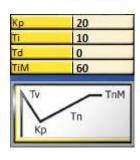
Schaltfeld 2:

Wenn die Freigabe (Ena), die Endschalter (Lim-, Lim+), nicht Drehzahl = 0 und nicht Bremse (Brk) geschaltet sind (grün) wird der Drehzahl-Sollwert (N cmd (int)) im Rampenfeld bearbeitet.

Rampenfeld:

Die Beschleunigungs-Rampe (N R-Acc), die Verzögerungs-Rampe (N R-Dec), die Endschalter-NOTAUS-Rampe (R-Lim) und die Drehzahl-Begrenzung (N-Lim, N-Lim+, N-Lim-) werden eingestellt. Das Ergebnis wird im Anzeigefeld Drehzahl-Sollwert nach Rampe (N cmd (ramp)) dargestellt. Dieses verarbeitete Signal (N cmd (ramp)) ist schließlich der Eingang für den Drehzahlregler.

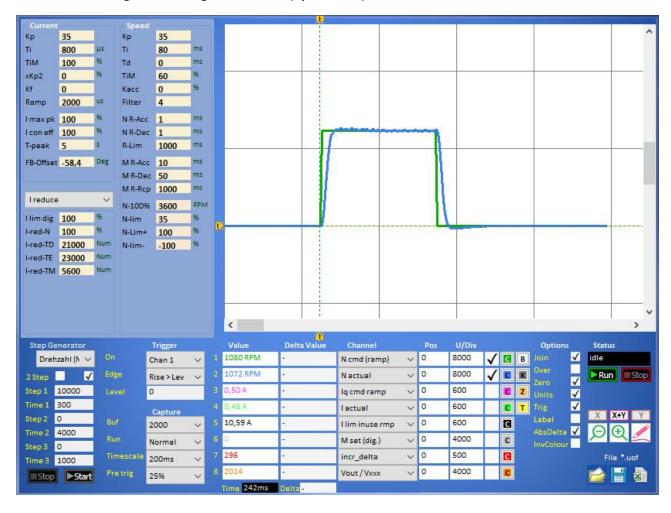
Drehzahlregler Parameter


Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x2C
Ti	Nachstellzeit (Integrale Zeitkonstante)	010000	ms	0x2D
Td	Vorhaltezeit (Differenzier-Anteil)	0100	ms	0x2E
TiM	Maximalwert vom Integral-Speicher Ti	0100	%	0x3B

Seite: 74

Der gefilterte Drehzahl-Istwert (N act (filt)) wird nach dem Filter im Feld Drehzahl-Istwert (N actual) angezeigt.

Der Drehzahl-Istwert wird im Mischpunkt vom Drehzahl-Sollwert subtrahiert. Das Ergebnis wird im Anzeigefeld Drehzahl-Fehler (N error) dargestellt.


Der Drehzahl-Ausregelfehler wird im Drehzahlregler (PID-Verstärker) verarbeitet. Es werden die Proportional-verstärkung (Kp), der Integral-Anteil (Ti), der Differenzier-Anteil (Td) und die Speicherbegrenzung für den Drehzahlregler eingestellt.

Der Ausgang vom Drehzahlregler ist der unverarbeitete Strom-Sollwert (I fn(N)).

12.2.1 Einstellung Drehzahlregler-Paramter (Kp ,Ti, TiM)

Die Einstellung vom Drehzahlregler ist hauptsächlich abhängig von:

- den Eigenschaften des Gesamtsystems (Last-, Reib- und Schwungmomenten des Antriebs)
- der Leistung des verwendeten Umrichters und Motors abhängig (Motor und Umrichter müssen richtig ausgelegt sein für das Gesamtsystem)
- dem verlangtem Regelverhalten der Drehzahl (Sanft, Aggressiv, Einschwingverhalten)

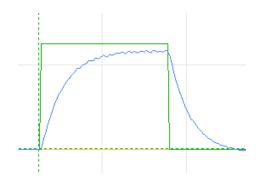
Voraussetzung:

- Umgang mit dem NDrive Oszilloskop (Signale "N cmd (ramp)" und "N actual" als Messkanal).
- Der Motor sollte entweder Freilaufend sein oder an einer konstanter Last anliegen.
- Eine stabile RS232 Kommunikation haben um einen digitalen Sollwert vorzugeben und mit dem NDrive Oszilloskop Aufwzeichnungen zu machen.

Hinweis:

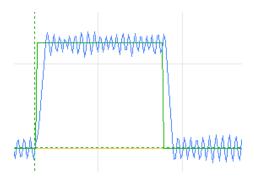
Die folgende Einstellung vom Drehzahlregler konzentriert sich auf allgemein statische Gesamtsysteme. Bei dynamischen Systemen müssen eventuell nachträglich Anpassungen gemacht werden.

Drehzahlregelung


Einstellung Kp-Wert:

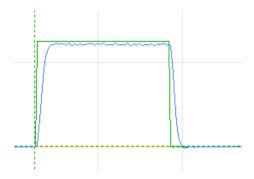
- Entfernen vom Integralanteil (TiM = 0 %).
- Gewollte Drehzahlrampe (N R-Acc = 10..10000 ms) einstellen.
- Trigger im NDrive Oszilloskop auf Kanal 1 (N cmd (ramp)), Rise > Lev 100 stellen.
- Oszilloskop Aufzeichnung starten, Drehzahlsollwert (Bsp.: 1000) vorgeben (Test- oder Step-Generator), Umrichter deaktivieren (RUN (FRG) = Off), Oszilloskop Aufzeichnung analysieren.

Seite: 76


Kp-Wert zu klein

- 1. Differenz zwischen Drehzahl-Sollwert (N cmd (ramp)) und Drehzahl-Istwert (N actual) zu groß.
- 2. Der Drehzahl-Sollwert wird nicht erreicht und die Beschleunigung ist zu gering.
- 3. Der Antrieb reagiert weich auf Sollwertänderungen und lässt sich im Stillstand ohne viel Kraft verdrehen.

Kp-Wert zu groß

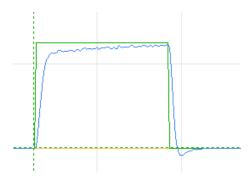

- 1. Drehzahl-Istwert schwingt stark über den Drehzahl-Sollwert.
- 2. Rauher Lauf, hohe Schwingneigung (auch im Stillstand) und Motorgeräusche.

Kp-Wert gut

- 1. Drehzahl-Istwert schwingt nicht.
- 2. Differenz zwischen Drehzahl-Sollwert und Drehzahl-Istwert ist gering (Optimal: Regelfehler < 5 %).

Der verbleibende Drehzahlfehler wird mit der Integraleinstellung ausgeregelt.

Drehzahlregelung

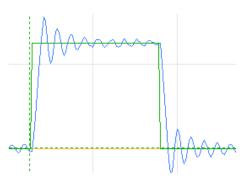

Einstellung Ti und TiM-Wert:

- Ermittelten KP-Wert beibehalten.
- Hinzufügen vom Integralanteil (TiM ≠ 0 %, Ti ≠ 0 μs).
- Gewollte Drehzahlrampe (N R-Acc = 10..10000 ms) einstellen.
- Trigger im NDrive Oszilloskop auf Kanal 1 (N cmd (ramp)), Rise > Lev 100 stellen.
- Oszilloskop Aufzeichnung starten, Drehzahlsollwert (Bsp.: 1000) vorgeben (Test- oder Step-Generator), Umrichter deaktivieren (Run (FRG) = Off), Oszilloskop Aufzeichnung analysieren.

Seite: 77

Ti zu groß

- 1. Regelfehler wird kaum oder zu langsam ausgeglichen.
- 2. Langwelliges Schwingen möglich.

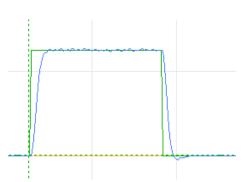


Ti zu klein

- 1. Großer und schneller Überschwinger beim ersten Sollsprung.
- 2. Kurzwelliges Schwingen möglich.

Hinweis:

3. Da Ti von Kp abhängt, beinflusst eine nachträgliche Anpassung von Kp das Verhalten des Integralanteils.



Kp und Ti gut Eingestellt

- Schnelle Regelung vom schnellen Sollsprung ohne großen Überschwinger sowie schnelle Korrektur bei Sollwertänderung
- 2. Kein kurz oder langwelliges Schwingen

Hinweis:

- Bei schnellen Lastwechsel oder im Bereich der Spannungsgrenze kann das System instabiel werden
- Ausregelfehler (Überschwingen) mit dem Parameter TiM auf Minimum bringen. TiM Wert so klein wie möglich wählen.

13 Drehmomentregelung

13.1 Drehmomentregelung – Paramter-Übersicht

Parameter-Übersicht für die Einstellung der allgemeinen Strom-Vorgaben, der verschiedenen Rampenzeiten für die Drehzahl und Momenten Rampen und der verschiedenen Limitierungen.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
M set (dig.)	Digitale Sollwert-Vorgabe vom Wirkstrom (Iq)	±32767	Num	0x90
	→ Dig. Drehmoment-Vorgabe			
	(Normierung: 32767 ≙ I max pk (bei 100 %))			
Id set (dig.)	Digitale Sollwert-Vorgabe vom Blindstrom (Id)	±32767	Num	0x21
	(Normierung: 32767 ≙ I max pk (bei 100 %))			
N R-Acc	Drehzahl – Beschleunigungsrampe	030000	ms	0x35 _L
N R-Dec	Drehzahl – Bremsrampe	030000	ms	0xED _L
M R-Acc	Moment – Beschleunigungsrampe ¹	04000	ms	0х35н
M R-Dec	Moment – Abbaurampe ¹	04000	ms	0xED _H
M R-Rcp	Moment – Rekuperationsrampe 1,2	04000	ms	0хC7 _н
N-100%	Physikalischer Referenzwert für die interne	10050000	rpm	0xC8
	Auflösung der Drehzahl auf 16 Bit (±32767)			
N-Lim	Positive und Negative Drehzahlbegrenzung	0100	%	0x34
	N-Lim = 100 % → Reiner Torque Betrieb ⁴			
	N-Lim < 100 % → Torque Tempomat aktiv			
N-Lim+	Stromgrenze für rekuperierenden Bremsstrom	0100	%	0x3F
	(siehe Funktion automatisches Rekuperieren)			
N-Lim-	Stromgrenze für rekuperierenden Bremsstrom	0100	%	0x3E
	(siehe Funktion automatisches Rekuperieren)			
M out	Iq-Strom → Drehmoment-Istwert	±32767	Num	0xA0
	(Normierung: 32767 ≙ I max pk (bei 100 %))			
¹ Ab FW476				·

² Ab FW476 nur aktiv wenn 0xCD Bit 4 = 1 gesetzt ist

³ Bei Strom- (Momenten-) Vorgabe und N-Lim < 100 % ist Torque-Tempomat aktiviert

⁴ Drehzahl wird nur anhand der Last und der Zwischenkreisspannung begrenzt

Drehmomentregelung

13.2 Drehmomentregelung – Allgemein

- Eine Drehmomentregelung ist eigentlich eine Strom-Sollwert-Vorgabe. Das motorische Drehmoment bildet sich anhand der Motorkonstante von kt = Nm / 1 Arms die generell unbekannt ist.
- Der Strom-Sollwert kann entweder analog über den Analog Torque Mode oder als digitale Sollwert-Vorgabe über M set (dig.) (0x90) erfolgen. Beide geben den Wirkstrom (Iq) vor.
- Die Strom-Sollwert-Vorgabe wird über die Drehmoment-Rampen (M R-Acc, M R-Dec, M R-Rcp) direkt auf den Stromregler geschaltet

Hinweis:

Bei digitaler Sollwert-Vorgabe entscheidet die letzte empfangene Vorgabe ob es sich um eine Drehzahlregelgung (N set (dig.)) oder einer Drehmomentregelung (M set(dig.)) handelt. Es kann also direkt zwischen den verschiedenen Betriebmodis umgeschalten werden (Bsp.: Hill Hold).

Eine ausführliche Beschreibung der verschiedenen Einstellmöglichkeiten der Drehmomentregelung sowie der verschiedenen Sonderfunktionen wie automatisches rekuperierendes Bremsen, sind in den Zusatzmanuals (NDrive Ordner \ manuals) "Bamocar_FAQ.pdf" und "Information on special Car applications.pdf" zu finden.

13.3 Drehmomentregelung – Torque-Tempomat

Torque-Tempomat ist ein Betriebsmodus bei dem ein Strom-Sollwert als Vorgabe gesetzt ist, jedoch der Übergeordnete Drehzahlregler noch aktiv am Arbeiten ist und den Strom-Sollwert reduziert um die Drehzahlgrenze nicht zu überschreiten. Torque-Tempomat ist somit vergleichbar mit einem Limiter in einem Fahrzeug.

N-Lim = 100 % (Torque-Tempomat deaktiviert):

- Reiner Drehmoment- (Strom-) Betrieb ohne ein Eingreifen des Drehzahlreglers.
 - → Keine Begrenzung aktiv
 - → Keine Limitierung anhand der Drehzahlrampen aktiv
- Drehzahl wird nur anhand der anliegenden Last und der Zwischenkreisspannung begrenzt.
 - → Gefahr das die tatsächliche Drehzahl größer als die 16 Bit Auflösung von N-100% (0xC8) ist.
- Keine Einstellung der Parameter des Drehzahlreglers nötig.

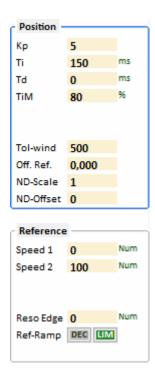
N-Lim < 100 % (Torque-Tempomat aktiviert):

- Drehmoment- (Strom-) Betrieb mit Eingreifen des Drehzahlreglers anhand der maximal erlaubten Drehzahl.
- Die Einstellung der Drehzahlrampen (N R-Acc, N R-Dec) ist immer aktiv und sorgt für Drehmoment-Betrieb mit definierter Beschleunigung.
 - → Genaue Überlegung der großen Anzahl an verschiedenen Rampenmöglichkeiten nötig
- Einstellung der Parameter des Drehzahlreglers nötig

Empfehlung:

• Aktivierung von Torque-Tempomat (N-Lim = 99 %) immer bei Drehmomentregelung. Grund: Verhindert Kontrollverlust bei plötzlichen Lastwechsel und verhindert wegrennen des Motors

- Den Drehzahlregler weich einstellen (Kp = 5, Ti = 400) dann bleibt die Stromregelung ruhiger
- Schnelle Drehzahlrampen (N R-Acc = N R-Dec = 10 ms) damit ein Eingreifen minimal bleibt.


14 Positionsregelung

14.1 Positionsreglung – Parameter-Übersicht

Parameter-Übersicht der Einstellungen für den Positionsregler.

Hinweis:

Viele dieser Parameter und weitere sind auch auf den Seiten **Position** und **Oszilloskop** zu finden.

Positionsregler Parameter:

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x6A
	Bestimmt die Steilheit der Verzögerungsrampe			
Ti	Integrations- Nachstellzeit (abhängig von Kp)	010000	ms	0x6B
Td	Vorhaltezeit (Differenzieller-Anteil)	01000	ms	0x6C
TiM	Maximalwert vom Integral-Speicher Ti	0100	%	0x71

Der verstärkte Positionsfehler bildet den Drehzahlsollwert

Die Positionsregelung ist deaktiviert wenn Kp = 0 ist

Die dynamische Regelverstärkungen Ti ist nur im Zielbereich wirksam

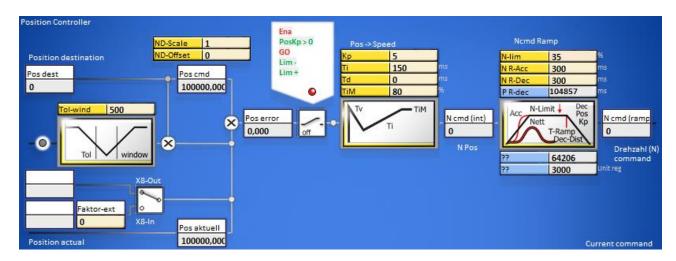
Referenzfahrt Parameter:

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Speed 1	Drehzahl zum Endschalter	032000	Num	0x76 _L
	Der Endschalter wird abhängig von der Drehzahl			
	überfahren			
Speed 2	Umkehr- Drehzahl zurück zum Nullimpuls	02000	Num	0x77 _L
	(Schleifengeschwindigkeit)			
Reso Edge	Erwartete Schaltflanke	065536	Num	0x75
Ref-Ramp	Auswahl der Rampe bei der Referenzfahrt	DEC / LIM		0x5A _{Bit 5}
	zwischen N R-Acc und R-Lim			
Mit der Ref	erenzfahrt wird der Nullpunkt des inkrementellen Ma	ßsystems bes	timmt	

Positionsregelung

Positions-Parameter:

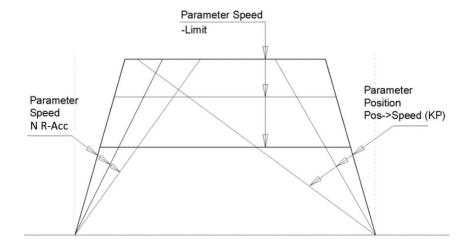
Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Tol-wind	Positions- Toleranzfenster	02000	Num	0x79
Off. Ref.	Mechanische Nullpunktverschiebung		Num	0x72
ND-Scale	NDrive Positions-Anzeige-Faktor	32 Bit - 1	Num	0x7C
ND-Offset	NDrive Positions-Anzeige-Offset	32 Bit - 1	Num	0x7D
Pos dest	Vorgabe Sollposition	±32 Bit - 1	Num	0x6E
Pos cmd	Verwendete Sollpostion (intern)	±32 Bit - 1	Num	0x91
Pos aktuell	Positions-Istwert	±32 Bit - 1	Num	0x6D
Pos error	Regelfehler Positions-Istwert	±32 Bit - 1	Num	0x70
32 Bit - 1 \rightarrow 2 ³² - 1 ±32 Bit - 1 \rightarrow ±2 ³² -	= 4.294.967.295 ¹ - 1 = ±2.147.483.647			


Hinweis:

- Eine Motorumdrehung entspricht dem Numerischen Wert von 65536.
- Die von der Steuerung über RS232 oder CAN gesendeten Positions-Sollwerte oder Parameter-Werte werden sofort ausgeführt

14.2 Positionsreglung – Strukturbild

Das Strukturbild von der Positionsregelung mit Eingabe- und Anzeigefenster der Reglerparameter ist auf der Seite **Position** für numerische Werte unter **Position Controller** dargestellt.

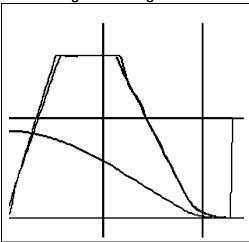


Der Positions-Istwert (Pos aktuell) wird im Mischpunkt vom Positions-Zielwert (Pos dest) subtrahiert. Ist das Ergebnis kleiner als der eingestellte Toleranzwert (Tol-wind) meldet dies das Statussignal am Toleranzfenster. Bei Freigabe wird der Positions-Zielwert (Pos dest) weitergeschaltet als Positions-Sollwert (Pos cmd). Der Positions-Istwert (Pos aktuell) wird im Mischpunkt vom Positions-Sollwert (Pos cmd) subtrahiert.

Das Ergebnis wird im Anzeigefeld Drehzahl-Fehler (N error) dargestellt. Wenn die Meldungen der Freigaben (Ena, GO), die Endschalter (Lim-, Lim+), und die Positionsregler-Verstärkung nicht Null (PosKp > 0) geschaltet sind (grün), wird der Positions-Ausregel-Fehler (Pos error) im Positionsregler (Pos → Speed) bearbeitet.

Es werden für beide Verstärker die Proportional-Verstärkung (Kp) der Integral-Anteil (Ti), der Differenzier-Anteil (Td) und die Speicherbegrenzung für den Integral-Anteil (TiM) eingestellt.

Die Ausgabe des Positionsreglers ist der Drehzahl-Sollwert als die interne Funktion (N fn(intern)).

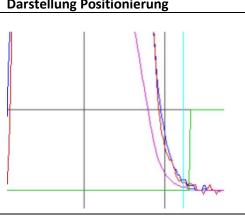

14.2.1 Positionsregler – Einstellungen

Der verstärkte Positionsfehler bildet den Drehzahlsollwert

- Position -		
Кр	5	
Ti	150	ms
Td	0	ms
TiM	80	%

Proportionale Regelverstärkung						
Кр	Proportionalverstärkung Positionsregelkreis.					
	Bestimmt die Steilheit der Verzögerungsrampe.					
Achtung:						
Die Positio	onsregelung ist abgeschaltet wenn kein Kp-Wert					
eingegebe	en ist.					
Dynamisc	he Regelverstärkung					
(nur im Zi	elbereich wirksam)					
Ti	Integral-Anteil					
Td	Differenzieller-Anteil					
TiM	Grenzwert-Integral-Anteil					
P R-dec	Positions-Zielrampen-Zeit:					
	Verzögerungszeit von maximaler Geschwindigkeit					
	in ms.					

Darstellung Verfahrweg



Einstellung - Verfahrweg

0	,	
N R-Acc	Bestimmt die Beschleunigungsrampe bis zur	
	Drehzahlgrenze für die Konstantfahrt .	
N-Lim	Bestimmt die Drehzahl bei Konstantfahrt.	
Кр	Bestimmt die Ziel-Rampe abhängig des	
	Positionsregelfehlers.	
P R-dec	Zeigt die Verzögerungszeit von 100 % Drehzahl auf	
	die Position (Drehzahl Null) an.	
Kleine Kn-Verstärkung führt zu einer langen Ziel-Rampe.		

- Kleine Kp-Verstärkung führt zu einer langen Ziel-Rampe.
- Hohe Kp-Verstärkung erzeugt eine kurze (steile) Ziel-Rampe.
- Bei zu hoher Kp-Verstärkung überfährt der Antrieb die Zielposition und schwingt in der Position. Die optimale Zielrampe ist so lang als möglich und so kurz als notwendig.

Darstellung Positionierung

Zusatz - Positionierung

Tol-wind	Positions- Toleranzfenster (Numerischer Wert)			
	Bei Pos-actual < Tol-wind wird der Ausgang O			
	Toler auf 1 gesetzt und im Status Tol angezeigt.			

Hinweis:

- Eine Motorumdrehung entspricht dem numerischen Wert von 65555.
- Die über RS232 oder CAN empfangen Positions-Sollwerte oder Parameter werden sofort ausgeführt.

Positionsregelung

14.2.2 Positionsregler - Zusatzinformation Einstellungen

Beschleunigung:

N R-Acc Beschleunigung-Zeit tb auf maximale Geschwindigkeit in ms

Beschleunigung a=V/tb

Konstantfahrt:

N-Lim Geschwindigkeits-Begrenzung unterhalb der maximalen Geschwindigkeit

Maximale Geschwindigkeit ist 100 % (32767 Num)

Verzögerung:

N R-Dec Bei Positionsregelung <10 ms einstellen

Kp Die Steilheit der Verzögerung ergibt sich aus der Proportional-Verstärkung

Verzögerungszeit:

T-Ramp (tv) von maximaler Geschwindigkeit (32767 Num) auf Null wird angezeigt in ms auf der

Seite: 84

Seite Position

Beispiel zu Verzögerung:

v = maximale Geschwindigkeit in m/s, tv = Verzögerungszeit (T Ramp) in s

v = 3 m/s, tv = 0.261 s

Verzögerung a in m/s²:

$$a = \frac{v}{tv}$$
 \rightarrow $a = \frac{3}{0.261} \frac{m}{s^2} = 11.5 \frac{m}{s^2}$

Verstärkung Kp aus gegebener Geschwindigkeit und Verzögerung:

$$Kp = \sqrt{\frac{a*2603}{v}}$$
 \rightarrow $Kp = \sqrt{\frac{11,5*2603}{3}} \% = 99,9 \%$

Rampen-Zielentfernung:

$$s = \frac{v^2}{s*a}$$
 \rightarrow $s = \frac{3^2}{2*11.5} m = 0.391 m$

14.2.3 Positionsregelung – Umrechnung der Maßeinheiten für Position

Bereich Pos-Istwert:	Resolver:	Inkrementalgeber:
Impulse/Upm	65536 pro Upm	65536 pro Upm
Maximalwert ±2147483647		
(31Bit-1)		
Auflösung (kleinster Wert)	16 (65536/4096 (12 Bit))	65536/Ink x 4
Beispiel:		Inkrementalgeber: 2048 Imp/Upm
Spindelantrieb mit	Fahrweg:	Fahrweg:
Steigung: 5 mm/Upm	1000 mm = 200 Upm	1000 mm = 200 Upm
	→ 200 Upm = 13107200	→ 200Upm = 1638400
	Auflösung: 65536/4096 = 16	Auflösung: 65536/8192 = 8

14.2.4 Positionsregelung – Skalierung Position

Anzeigefaktor Positionswerte für NDrive Darstellung skalieren

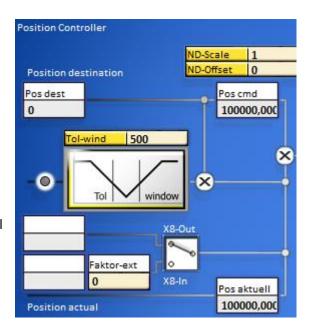
Mit dem Parameter ND-Scale (0x7C, Pos-Anzeigefaktor) wird die Anzeige der Werte für Pos dest, Pos cmd und Pos aktuell auf der Seite Position festgelegt. Bei Wert Null entspricht die Anzeige dem numerischen Wert (1 Motorumdrehung ist gleich 65536 Num).

Anzeige an den Vorschubwert anpassen

Umrechnungsfaktor vom Vorschubweg auf eine Motorumdrehung berechnen. Für die Anzeige muß dieser Wert mit der Konstanten 65536,000 multipliziert werden (≙ 1,000 mm / U)

Seite: 85

Beispiel 1: Weg in mm

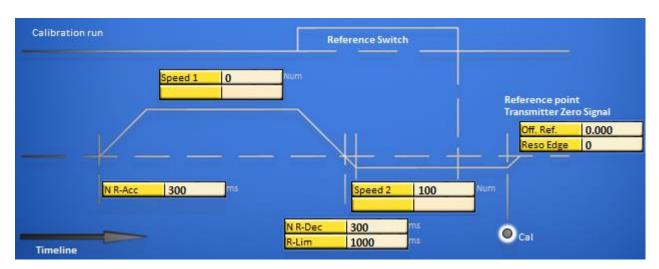

Anzeigewert in mm bei Pos dest, Pos cmd und Pos aktuell Spindelsteigung = 5 mm Getriebe-Übersetzung i = 20

Umrechnungsfaktor für eine Umdrehung 1/5 * 20 = 4 Pos-Anzeigefaktor 65536,000 * 4 = 262144,000 ND-Scale ist gleich 262144,000

Beispiel 2: Winkel in Grad

Anzeigewert in Grad bei Pos dest, Pos cmd und Pos aktuell Übersetzung 1 Grad gleich 10 Motorumdrehungen

Umrechnungsfaktor für eine Umdrehung = 10 Pos-Anzeigefaktor 65536,000 * 10 = 655360,000 ND-Scale ist gleich 655360,000



14.3 Positionsregelung – Referenzfahrt

14.3.1 Positionsregelung - Referenzfahrt Strukturbild

Das Strukturbild von der Referenzfahrt für die Positionsregelung mit Eingabe- und Anzeigefenster der Reglerparameter ist auf der Seite **Position** für numerische Werte unter *Calibration run* dargestellt.

Mit der Referenzfahrt wird der Nullpunkt des inkrementellen Maßsystems bestimmt.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Speed 1	Drehzahl zum Endschalter	032000	Num	0x76 _L
	Der Endschalter wird abhängig von der Drehzahl			
	überfahren.			
Speed 2	Umkehr- Drehzahl zurück zum Nullimpuls	02000	Num	0x77 _L
	(Schleifengeschwindigkeit)			
Reso Edge	Erwartete Schaltflanke	065536	Num	0x75
N R-Dec	Drehzahl – Bremsrampe	030000	ms	0xED _L
R-Lim	Notstop, Endschalter-Rampe	01000	ms	0xC7 _L

Die Referenzschalter werden im Parameterfeld Digitale Eingänge gewählt. Nach dem Einschalten der Maschine und dem Einschalten der Freigabe RUN (FRG) wird die Referenzfahrt (**Start Ref Drive**) durch einen digitalen Eingang (Din1, Din2) oder durch die Schnittstelle (CAN-BUS, RS232 über die ID-Adresse 0x78 ≠ 0) ausgelöst.

Achtung:

Fahrbefehle wie Start Ref Drive, N cmd (int) und andere werden erst 5 ms nach Freigabe erkannt. Zuerst Freigabe schließen oder senden und dann die Fahrbefehle senden.

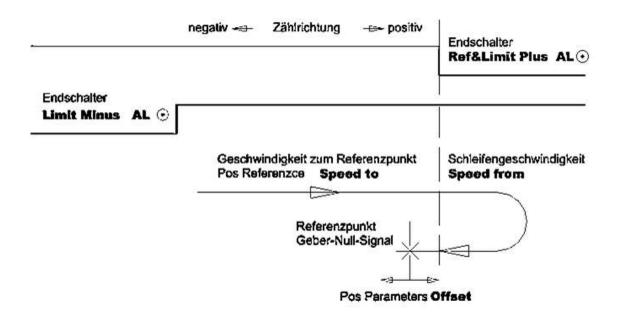
Positionsregelung

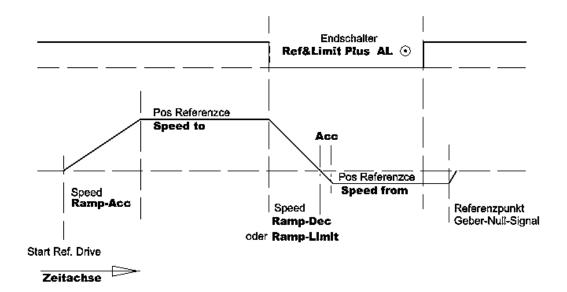
Referenzfahrt

Der Antrieb fährt mit der Geschwindigkeit Speed 1 zum Endschalter, überfährt diesen mit der Schleifengeschwindigkeit Speed 2 und kehrt zurück. Bei einem Referenzschalter fährt der Antrieb in positiver Richtung mit einer Schleife, in negativer Richtung mit einer Doppelschleife. Der Geräte-Positions-Nullpunkt wird nach der Endschalterflanke beim Inkrementalgeber-Nullsignal gesetzt. Beim Resolver wird der Absolutwert der Position (innerhalb einer halben Motorumdrehung) an der Endschalterflanke gespeichert (Zero-Capture).

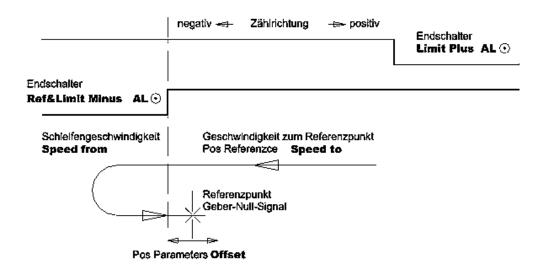
Der mechanische Nullpunkt kann mit dem Parameter Off. Ref. in Plus- oder Minusrichtung verschoben werden.

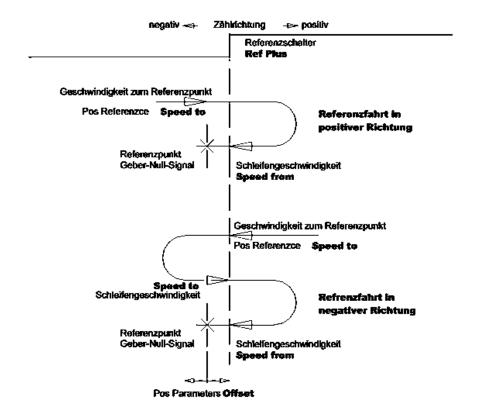
Übersicht der Referenzschalter zur Definition eines digitalen Eingangs.

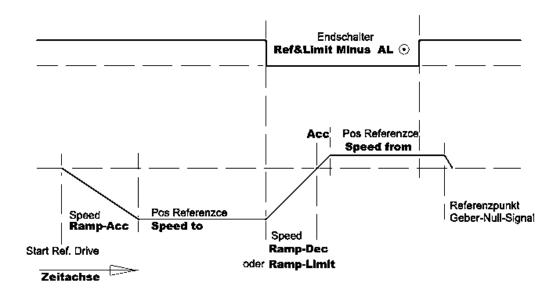

Auswahl Eingang:	Funktion:
Ref. & Limit Plus	Endschalter positiv Drehrichtung ist Referenzschalter
Ref. & Limit Minus	Endschalter negative Drehrichtung ist Referenzschalter
Ref. Plus	Schalterflanke in positiver Drehrichtung, unabhängig von den Endschaltern, ist
	Referenzschalter

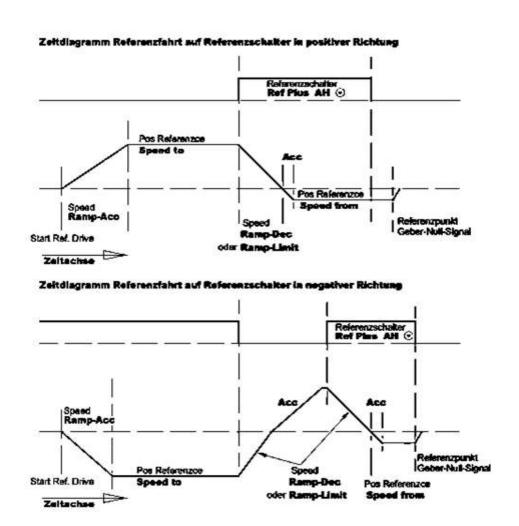


Mit dem Auswahlfenster (Parameterfeld Servo) wird die Verzögerung beim Umsteuern von Speed 1 auf Speed 2 von R-Lim auf N R-Dec umgeschaltet.




14.3.2 Positionsregler – Referenzfahrt Logikdiagramme





Feldschwächeregelung

15 Feldschwächeregelung

15.1 Feldschwächeregelung – Synchronmotor Allgemein

Feldschwächebetrieb bei Synchronmotoren mit Oberflächenmagneten ist nur in kleinem Bereich (max Faktor 1, 2) möglich und daher wirtschaftlich nicht sinnvoll.

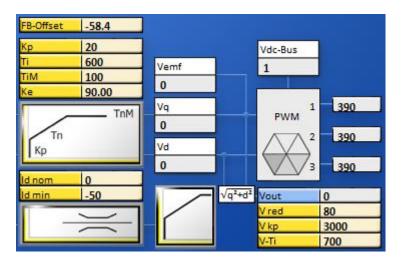
Bei Synchronmotoren mit eingebetteten Magneten (Schenkelpolmaschinen) werden Drehzahlbereiche bis zum Faktor 4 erreicht. Hier kann bei optimaler Auslegung der Motor und der Servo kleiner dimensioniert werden.

Achtung:

Beim Ausfall der Feldschwächung (Netzabschaltung, Fehlerabschaltung usw.) bei maximalen Drehzahlen können vom Motor hohe induzierte generatorische Spannungen erzeugt werden. Bei Geräten am Netz ist die Grenzspannung bei 400 V oder 800 V.

Bei Batterie betriebenen Geräten muss die Gegen EMK Spannung immer kleiner sein als die Batteriespannung.

Ohne externe Schutzschaltungen können die Geräte oder Batterien bei motorischen Überspannungen zerstört werden.



15.2 Feldschwächeregelung – Einstellung Parameter

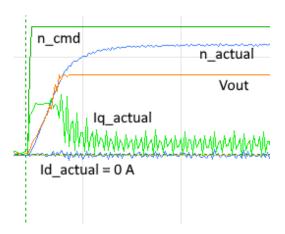
Parameter-Übersicht für die Feldschwächeregelung auf der Seite **Drehzahl**.

Hinweis:

Viele dieser Parameter sind auch auf der Seite **Oszilloskop** zu finden.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Id nom	Nominaler Id-Magentisierungsstrom in % vom Motor-	0100	%	0xB2
	Nennstrom (I nom eff)			
	Empfehlung: 0 % bei PMSM			
Id min	Minimaler Magentisierungsstrom in % vom Motor-	-1000	%	0xB5
	Nennstrom (I nom eff)			
	Empfehlung: -5030 %			
V-red	Spannungs-Referenzwert in % von Vout	0100	%	0x8B
	(V-red ≠ 0, 100 % → Aktivierung Feldschwächeregelung)			
	Empfehlung: 6080 %			
V-kp	Proportional-Verstärkung der Feldschwächeregelung	065535	Num	0x8C
	Empfehlung: 5004000			
V-Ti	Nachstellzeit der Feldschwächeregelung	065535	Num	0x8D
	Empfehlung: 3005000			
	Achtung: Schwingneigung			

Feldschwächeregelung

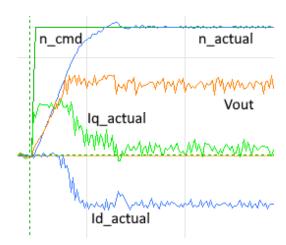


Ohne Feldschwächung:

Die Drehzahl (n_actual) erreicht bei maximaler möglicher Ausgangsspannung (Vout) nicht die Drehzahlvorgabe (n_cmd).

Wie es bei PMSM üblich ist wird der Id-Strom (Id_actual) konstant auf 0 A geregelt.

Der Iq-Strom (Iq_actual) stellt zunächst für die Beschleunigung einen entsprechendes Moment und fällt dann auf den maximal möglichen Wert ab.


Mit Feldschwächung:

Die Drehzahl (n_actual) erreicht unterhalb der maximalen möglichen Ausgangsspannung (Vout) die Drehzahlvorgabe (n_cmd).

Der Id-Strom (Id_actual) ist für die Feldschwächung auf den vom Feldschwächeregler vorgegebenen Wert von Id_ref ausgeregelt.

Bei Motoren mit Oberflächen-Magneten fließt ein hoher Id-Strom für eine geringe Drehzahlsteigerung.

Auch hier stellt der Iq-Strom (Iq_actual) zunächst für die Beschleunigung einen entsprechendes Moment und fällt dann auf den benötigten bzw. noch zur Verfügung stehenden Wert ab.

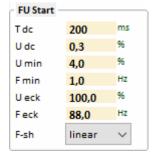
Achtung:

Der Feldschwächebetrieb ist keine Empfohlene Lösung für ein schlecht ausgelegtes System.

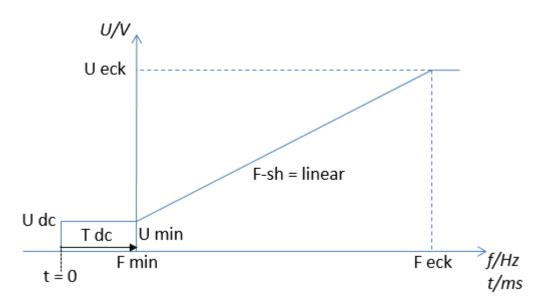
Obwohl die Drehzahl angehoben werden kann, sinkt jedoch das Moment auf Grund der physikalischen Eigenschaften eines PMS Motors auf einen sehr geringen Wert. D.h. der Motor hat im Feldschwächebetrieb deutlich weniger Kraft trotz eines hohen Stromverbrauchs.

Der zusätzlich gestellte Blindstrom (Id_actual) sorgt zum einen das der Motor sich sehr stark aufheizt und zum anderen, obwohl der Wirkstrom (Iq \triangleq Moment) sehr gering ist, ist der Verbrauch aus der Versorgung durch die zusätzliche Stromkomponente sehr hoch.

D.h. bei einem System mit einer HV Batterie (Bsp. Fahrzeug), geht dies zu Lasten der Batteriekapazität (und somit der Reichweite).


16 Frequenzumrichter Betrieb (ACI V/f)

16.1 Frequenzumrichter – Einstellung Parameter der FU Kennlinie


Parameter-Übersicht der Frequenzumrichter Kennlinie von FU Start.

Hinweis:

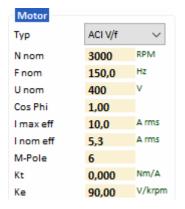
Viele dieser Parameter sind auch auf der Seite **Oszilloskop** zu finden.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
T dc	Vormagnetisierung-Zeit		ms	0x07 _L
	Verzögerung zwischen Einschalten und Starten der			
	Frequenz			
U dc	Vormagnetisierung-Gleichspannungswert	020	%	0x08 _L
U min	Minimalspannung (Boost) bei Stillstand des Motors		%	0x0A _L
	→ U/F Kennlinie wird angehoben			
	Empfohlen: U min = U dc			
F min	Minimalfrequenz bei Stillstand des Motors		Hz	0x0B _L
U eck	Maximale Ausgangsspannung bei der Eckfrequenz	0100,0	%	0x0C _L
F eck	Eckfrequenz für maximale Ausgangsspannung	11000,0	Hz	0x0D _L
F-sh	Form der Kennlinie (Linear, Halb-Quadratisch,			
	Quadratisch)			

Hinweis:

In Ndrive ist zur Zeit nur das Parameterfeld FU Start der Kennlinieneinstellung für den Frequenzumrichter Betrieb im Einsatz. Die Kennlinie für FU Stop ist gleich der von FU Start.

Frequenzumrichter Betrieb (ACI V/f)



16.2 Frequenzumrichter – Einstellung Motor Parameter

Eine Frequenz-Regelung ohne Feedback-Geber kann über das Einstellfeld für den Frequenzumrichter im Feld Motor konfiguiert werden.

Bei Normmotoren für Netzbetrieb sind auf dem Typenschild oft Angaben zu 50/60 Hz Betrieb und Stern- Delta-Schaltung zu finden. Diese Angaben sind international standardisiert.

Bei Motoren für Umrichterbetrieb liegt der Nennarbeitspunkt bei einer festen Frequenz, gewöhnlich oberhalb der 50/60 Hz Netzfrequenz. Nicht alle Hersteller geben die weiteren Werte vollständig an.

Die Nenndrehzahl im Nennarbeitspunkt (Nennfrequenz, Nennlast) fehlt teilweise oder die Angabe von Cosphi fehlt. Teilweise sind die Werte auch missverständlich angegeben, z.B Spannung bezogen auf Phase zu Phase (Klemmenspannung), oder Strangspannung (Klemme zu Sternpunkt), oder DC-Bus Spannung Die Angaben der Hersteller und Dimensionen bitte sorgfältig prüfen (V, VAC, VDC, A, Arms, etc.).

Nenndaten:	Kurzz.:	Beispielmotor 50Hz:	Beispielmotor 60Hz:	Einheit:
Netzfrequenz	F nom	50	60	Hz
Nennspannung	U nom	220-240, 360-420	255-275, 440-486	V
Nennstrom	I nom eff	2.33-2.25, 1.35-1.30	2.26-2.18, 1.30-1.26	Arms
Nenndrehzahl	N nom	2820	3385	rpm
Cosphi	Cos Phi	0.85	0.85	

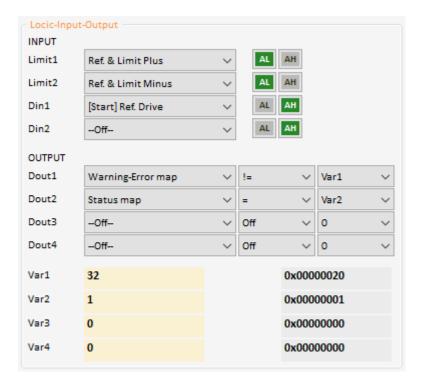
Aus den obigen Nenndaten können mit der antriebsinternen Funktion "[Fn8] Berechnung von Motor Typenschild" weitere Werte für das Motormodell ermittelt werden (→ Seite **Auto**).

Aktualisierung der Anzeige in NDrive erfolgt erst mit Vorgang offline-online (d.h. RS232-Kommunikation trennen und wieder verbinden).

Aktivierung Frequenzumrichter Betrieb:

- 1. Auf der Seite Einstellungen als Motor-Typ "ACI V/f" auswählen.
- 2. Als Feedback Typ "**SLS**" auswählen.

Hinweis:


Im Frequenzumrichter Betrieb bei der Ansteuerung eines AS-Motors ohne eine Geberrückmeldung, existiert keine Schlupfkompensation.

17 Logik

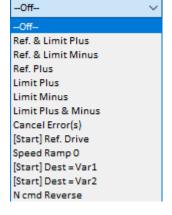
17.1 Logik – Gesamtübersicht

Einstellfeld für die digitalen Eingänge (INPUT) und der digitalen Ausgänge (OUTPUT) in NDrive auf der Seite **Logik**.

INPUT:	
Limit1	Programmierbarer digitaler Eingang, bevorzugt als Endschalter und Referenzschalter
Limit2	Programmierbarer digitaler Eingang, bevorzugt als Endschalter und Referenzschalter
Din1	Programmierbarer digitaler Eingang
Din2	Programmierbarer digitaler Eingang

OUTPUT:	
Dout1	Programmierbarer digitaler Ausgang (Operanten und Vergleichs-Variable)
Dout2	Programmierbarer digitaler Ausgang (Operanten und Vergleichs-Variable)
Dout3	Programmierbarer digitaler Ausgang (Operanten und Vergleichs-Variable)
Dout4	Programmierbarer digitaler Ausgang (Operanten und Vergleichs-Variable)
	(Dout4 ist nicht bei allen Geräten verfügbar)
Var1 bis Var4	Vergleichs-Variable

17.2 Logik – Digitale Eingänge


17.2.1 Logik - Digitale Eingänge Allgemein

Allgemein kann zu jedem digitalen Eingang der anliegende Logikpegel ausgelesen werden.

Zusätzlich ist es möglich jedem einzelnen digitalen Eingang eine Vielzahl an Sonderfunktionen zuzuweisen.

Die Auswahl der Sonderfunktionen erfolgt über das jeweilige Pulldown-Menü.

Diese Sonderfunktionen werden abhängig der Konfiguration der Aktivierungsbedingung (AL / AH) vom Logikpegel des digitalen Eingangs ausgelöst.

Die Einstellung der Aktivierungsbedingung der Sonderfunktionen erfolgt über die Schalter AL = Aktiv Low und AH = Aktiv High.

Mit der Return-Taste werden die Funktionen in den RAM-Speicher geschrieben und ausgeführt Durch das Speichern im Eprom Ebene 0 sind diese Einstellungen auch dauerhaft gespeichert und werden nach einem Neustart angewendet.

Die Endschaltereingänge Limit1, Limit2 werden im Statusfeld mit Lim+ und Lim- angezeigt Diese können aber auch für andere Funktionen konfiguriert werden.

Beispiel:

INPUT:	Auswahl:	Funktion:	Acv. Logic:
Limit1	Ref. & Limit Plus	Endschalter Plusrichtung ist auch Referenzschalter	AL
Limit2	Limit Minus	Endschalter Minus	AL
Din1	[Start]Ref. Drive	Start Referenzfahrt	АН

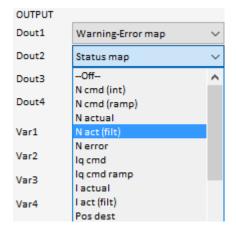
Hinweis:

Alle digitalen Eingänge haben intern einen Pulldown Widerstand und müssen daher bei nicht Verwendung nicht extra noch auf Low verdrahtet werden.

17.2.2 Logik – Digitale Eingänge Übersicht Konfiguration

Übersicht der Konfigurationsmöglichkeiten bzw. der Sonderfunktionen eines digitalen Eingangs (INPUT)

INPUT:	Funktion:
Ref. & Limit Plus	Endschalter Plusrichtung ist auch Referenzschalter
Ref. & Limit Minus	Endschalter Minusrichtung ist auch Referenzschalter
Ref. Plus	Referenzschalter Plusrichtung
Limit Plus	Endschalter Plusrichtung
Limit Minus	Endschalter Minusrichtung
Limit Plus & Minus	Endschalter Plusrichtung und Minusrichtung
Cancel Error(s)	Löschen Fehlerspeicher
[Start]Ref. Drive	Referenzfahrt starten
Speed Ramp 0	Drehzahl-Sollwert intern auf 0 geschaltet (während Speed 0 aktiv)
[Start] Dest > Var1	Position Variable 1 wird gestartet
[Start] Dest > Var2	Position Variable 2 wird gestartet
N cmd Reverse	Sollwert-Polarität wird umgeschaltet (Drehzahlrichtung invertiert)
[Preset] Pos = Var3	Positions-Istwert wird auf Variable 3 gesetzt
[Capture] Var3 = Pos	Setzt Variable 3 als Position (Ziel) und fährt auf Position
[Capture] Var4 = Pos	Setzt Variable 4 als Position (Ziel) und fährt auf Position
[Switch] Spd = !Ain1/Ain2	Umschaltbefehl Sollwert Ain1 oder Sollwert Ain2
[Switch] Spd = !Var1/Var2	Umschaltbefehl Sollwert Var1 oder Sollwert Var2
I limit (dig.)	Strombegrenzung auf die Einstellung vom Parameter I limit dig
N clip (neg. & pos.)	Drehzahlbegrenzung auf die Einstellung vom Parameter
	N-Lim+ und N-Lim-
[Switch] Cmd = !Dig/Ana	Umschaltbefehl Sollwert Digital + Analog Einstellung
	(Command Mode Digi + Ana Speed)
Speed Ramp 0 + Pos	Positionierung auf Position innerhalb einer Motorumdrehung
	(pos = Reso Edge)
Handrad	Inkrementaler Sollwert vom Handrad -Geber (2. Zählereingang)
Brake Car ¹	Regenerative Bremsfunktion #1
	(Strom-Einstellung bei N-Lim+ und N-Lim-)
recu_disab	Regenerative Bremsfunktion ist abgeschaltet
rising bank1, falling bank2	PARA_UPDATE
[Start] Dest = Var1,2,3,4	Position Sollwert aus Summe der Variablen Var1 bis Var2 wird gestartet
[Start] cw = Var1,2,3,4	Cw_kombi
Brake Car #2 ¹	Regenerative Bremsfunktion #2
	Betrachtung der Delta-Abweichung vom Analogeingang für die
	Bremskraft
¹ siehe "Information on special Car applic	cations.pdf"


17.3 Logik – Digitale Ausgänge

17.3.1 Logik - Digitale Ausgänge Allgemein

Allgemein kann der ausgegebene Logikpegel eines jeden digitalen Ausgangs über eine Vielzahl an Möglichkeiten konfiguriert werden.

Zur Konfiguration wird eine bekannte Messgröße (erste Spalte) als Referenz verwendet. Diese kann dann über eine Vielzahl an Möglichkeiten als Vergleich über Operanten (zweite Spalte) mit selbst definierten Variablen verglichen werden um den entsprechenden gewünschten Logikpegel auszugeben.

Die Auswahl der Messgröße als Referenz, die Operanten und die Auswahl der Vergleichsvariablen erfolgt über das jeweilige Pulldown-Menü.

Der Wert der Vergleichsvariablen erfolgt über die Eingabe im jeweiligen Eingabefeld von Var1, Var2, Var3 und Var4.

Das logische Ergebnis wird am digitalen Ausgang als Low (< 1 V) oder High (> 10 V) ausgegeben.

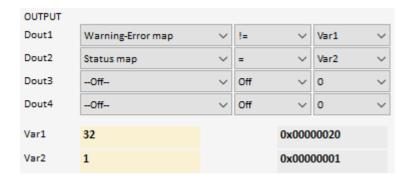
Mit der Return-Taste werden die Funktionen in den RAM-Speicher geschrieben und ausgeführt. Durch das Speichern im Eprom Ebene 0 sind diese Einstellungen auch dauerhaft gespeichert und werden nach einem Neustart angewendet.

Achtung:

Bei geschalteten Induktivitäten (Relais, Bremsen, usw.) Überspannungsschutz mittels Freilaufdioden oder Varistoren anschließen. Der Ausgangstreiber schaltet bei Überspannung ab.

17.3.2 Logik – Digitale Ausgänge Übersicht Konfiguration

Übersicht der Konfigurationsmöglichkeiten eines digitalen Ausgangs.


OUTPUT:	Funktion:	ID-Adresse:
I cmd	Stromsollwert (Ergebnis Drehzahlregler)	0x26
I actual	Strom-Istwert	0x20
N cmd (ramp)	Drehzahl-Sollwert	0x32
N actual	Drehzahl-Istwert	0x30
Pos cmd	Verwendete Sollpostion (intern)	0x6E
Pos aktuell	Positions-Istwert	0x6D
N error	Ausregel-Fehler Drehzahl	0x33
Pos error	Regelfehler Positions-Istwert	0x70
T Motor	Motortemperatur	0x49
Alle in der Messwerteauswahl aufgelisteten Parameter können den Ausgängen zugeordnet werden		

Operant:	Funktion:
Off	Immer Aus
On	Immer Ein
1Hz	Pulsiert mit f = 1 Hz
=	gleich
!=	ungleich
>	größer als
<	kleiner als
abs >	Absolut-Wert größer als
abs <	Absolut-Wert kleiner als
tol >	Toleranz Eingabe TOL-wind
Tol <	Toleranz Eingabe TOL-wind
>=	größer gleich
<=	kleiner gleich
hyst >=	Hysterese bei >=
Hyst <=	Hysterese bei <=
window	Toleranzfenster ±25 %

Variable:	Funktion:	ID-Adresse:
0	Logiksignal Null	
1	Logiksignal Eins	
Var1	Numerischer Wert der	0xD1
Var2	eingegebenen	0xD2
Var3	Variablenfelder	0xD3
Var4		0xD4
Ain1	Numerischer Wert der	
Ain2	Spannungen an den	
	Analogeingängen	

Logik

Beispiel 1: Kein Fehler "Leistungsspannung fehlt" auf einen digitalen Ausgang konfigurieren

Ziel:

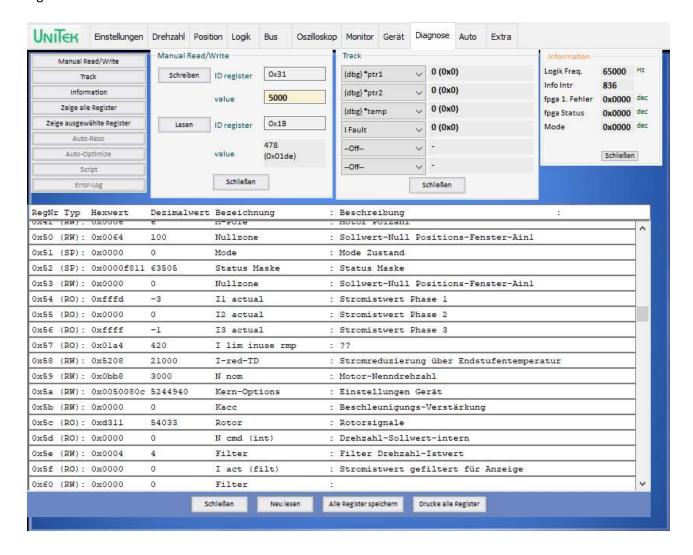
Ausgang Dout1 soll einen High (> 10 V) Logikpegel ausgeben wenn die Leistungsspannung eingeschaltet ist, bzw. wenn kein Fehler 5 (POWERVOLTAGE, Leistungsspannung fehlt) anliegt.

- Dem Ausgang **Dout1** über das Pulldown-Menü das Signal (**Warning-Error map**) auswählen.
- Operant auf (!=) setzen.
- Als Vergleichsvariablen wird (Var1) ausgewählt.
- Im Eingabefeld für **Var1** den Dezimalwert **32** für die Abfrage auf Fehler 5 der Fehlerinformation (**0x8F**_{Bit 5}) eintragen. Eine Abfrage auf eine Kombination auf mehrere Bits ist auch möglich.

Beispiel 2: Status Information "Ena" auf einen digitalen Ausgang konfigurieren

Ziel:

Ausgang Dout2 soll einen High (> 10 V) Logikpegel ausgeben, wenn der Umrichter aktiviert ist, bzw. wenn die PWMs aktiv auf den Motorleitungen eine Spannung ausgeben ist die Statusinformation **Ena** ($0x40_{Bit\,0}$) gesetzt.


- Dem Ausgang **Dout2** über Pulldown-Menü das Signal (**Status map**) auswählen.
- Operant auf (=) setzen (Invertiert auf (!=)).
- Als Vergleichsvariablen wird (Var2) ausgewählt.
- Im Eingabefeld für **Var2** den Dezimalwert **1** für die Abfrage auf die Statusinformation Ena (0x40_{Bit 0}) eingetragen. Eine Abfrage auf eine Kombination auf mehrere Bits ist auch möglich.

18 Diagnose

18.1 Diagnose – Gesamtübersicht

Die Seite **Diagnose** in NDrive ist ein Informationsfenster für das Anzeigen sowie das manuelle Auslesen von Signalen und Einstellen von Parametern.

Übersicht der einzelnen Fenster auf der Seite Diagnose.

Manual Read / Write	Direktes Auslesen und Eingeben von Parameterwerte auf definierte	
	ID-Adressen	
Track	Anzeige von ausgewählten Messsignale (numerisch)	
Information	Anzeige von internen Servo Informationen	
Zeige alle Register	Alle Register als Tabelle sind aufgelistet	
Zeige ausgewählte Register	Ausgewählte Register als Tabelle sind aufgelistet	
Auto-Reso	noch nicht installiert	
Auto-Optimize	noch nicht installiert	
Script	noch nicht installiert	
Error-Log	noch nicht installiert	

18.2 Diagnose - Manual Read/Write

Direktes Auslesen und Eingeben der Parameterwerte (Achtung: nur für Service!).

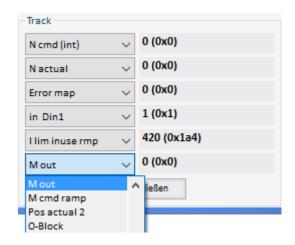
Parameter Schreiben:

- In das Eingabefeld ID register die ID-Adresse eingeben.
- Im Eingabefeld **value** den Wert für die gewählte ID-Addresse eingeben (Numerisch oder als Hex-Wert).
- Enter oderTastenfeld Schreiben anklicken.
 Der neue Werte wird sofort übernommen.

Parameter Lesen:

- In das Eingabefeld ID register die ID-Adresse eingeben
- Enter drücken oder Tastenfeld Lesen anklicken.
 Bei value erscheint der Inhalt des Parameters (Numerisch und als Hex-Wert).

18.3 Diagnose – Track


Anzeigen mit automatischem zyklischem Auslesen von einer Selektion von bis zu 8 verschiedenen Mess- und Parameterwerte (Achtung: nur für Service!).

Über das Pulldown-Menü wird die jeweilie Variabel ausgewählt.

Die Aktuellen Werte werden Numerisch als auch in Hex-Werte (0x..) angezeigt.

Hinweis:

Alle Messwerte können auch im Oszilloskop angezeigt werden.

18.4 Diagnose – Information

Anzeigefeld für aktuelle Zustände spezieller Signale.

Kurzz.:	Funktion:
Logik Freq.	Geschwindigkeit des Vordergrundprogramms
Info Intr	Drehzahl-Istwert-Störung
fpga 1. Fehler	Erster erfasster Fehlercode vom Ecode Signal
fpga Status	Aktueller Fehlercode vom Ecode Signal
Mode	Mode-Bit-Einstellung (0x51)

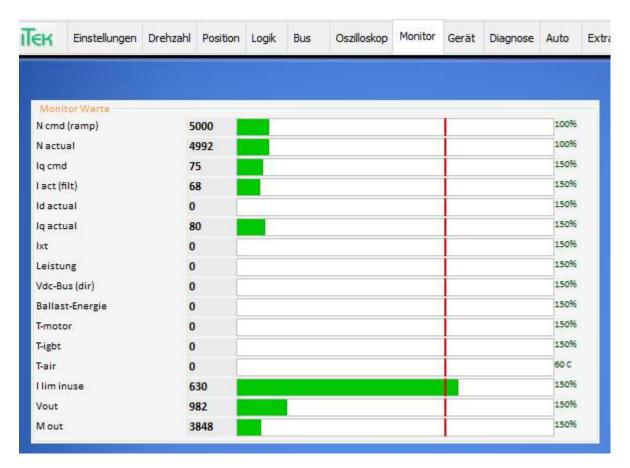
18.5 Diagnose – Zeige Register

Anzeigen einer Listenansicht aller oder nur bestimmer Anzahl an Variablen. (Keine zyklische Aktualisierung sondern nur einmalig)

Optionen für das Anzeigefeld für Register:

Auswahl:	Funktion:	
Zeige alle Register	Alle 255 Register werden in einer Tabelle dargestellt.	
	Die Registerinhalte können nicht verändert werden.	
Zeige ausgewählte Register	Nur die für den Anwender wichtigen Register werden in einer Tabelle	
	dargestellt.	
	Die Auswahl erfolgt mit der Konfiguration der Textdatei "reglist.txt".	
	→ '\NDrive2-Software\settings\reglist.txt'	
	Die Registerinhalte können nicht verändert werden.	

Auswahl der Optionen in der Fußzeile:

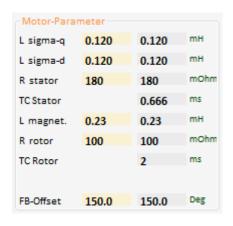

Auswahl:	Funktion:
Schließen	Anzeigefeld wird geschlossen.
Neu lesen	Die Parameterwerte werden neu aus dem Gerät (Servo)
	gelesen.
Alle / Ausgewählte Register speichern	Alle / Die angezeigten Register werden in eine Datei
	geschrieben.
Drucke alle / ausgewählte Register	Alle / Die angezeigten Register werden gedruckt.

19 Monitor

19.1 Monitor – Gesamtübersicht

Übersicht der angezeigten Signale auf der Seite Monitor.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
N cmd (ramp)	Drehzahl-Sollwert nach Rampe und Limit	032767	Num	0x32
N actual	Drehzahl Istwert	032767	Num	0x30
Iq cmd	Wirkstrom (Iq) Sollwert (intern)	±2000	Num	0x26
I act (filt)	Aktuelle Summenstrom nach Anzeigefilter	±2000	Num	0x5F
Id actual	Aktueller Blindstrom (Id)	±2000	Num	0x28
Iq actual	Aktueller Wirkstrom (Iq)	±2000	Num	0x27
Ixt	Auslastung Ixt	04000	Num	0x45∟
Leistung	Motorleistung (nicht verwenden!)	04000	Num	0xF6
Vdc-Bus (dir)	Zwischenkreis- Spannung	032767	Num	0xEB
Ballast-Energie	Ballast-Leistung	04000	Num	0х45 _н
T-motor	Aktuelle Motortemperatur	032767	Num	0x49
T-igbt	Aktuelle Endstufentemperatur	032767	Num	0x4A
T-air	Aktuelle Lufttemperatur im Servo	032767	Num	0x4B
I lim inuse	Aktuelle Stromgrenze	02000	Num	0x48
Vout	Aktuelle Ausgangsspannung	04000	Num	0x8A
M out	Aktueller Wirkstrom (Iq) normiert	±32767	Num	0xA0



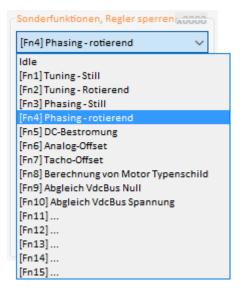
20 Auto (Sonderfunktionen)

Die Seite **Auto** in NDrive enthält eine-Übersicht für motorspezifische Parameter und dem Menü für die Aktivierung spezieller Sonderfunktionen.

20.1 Auto – Motor-Parameter

Übersicht der **Motor-Parameter** und der **Motor-Nameplate** Parameter auf der Seite **Auto**.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
L sigma-q	q-Komponente der Stator Streuinduktivität	065,535	mH	0xB1
	(bei ACIM ist Lsd = Lsq)			
L sigma-d	d-Komponente der Stator Streuinduktivität	065,535	mH	0xBB
R stator	Stator Widerstand ¹	065535	mOhm	0xBC
TC Stator	Statorzeitkonstante (Ls/Rs) ²	032767	ms	0xB6
L magnet	Hauptinduktivität	0655,35	mH	0xB3
R rotor	Rotor Widerstand ¹	065535	mOhm	0xB4
TC Rotor	Rotorzeitkonstante (Lm/Rr) ²	02000	ms	0xBD
FB-Offset	Geber Offsetwinkel	±360	Deg	0x44
¹ Eingabe erfolgt ohne Komma ² Berechnung erfolgt intern				

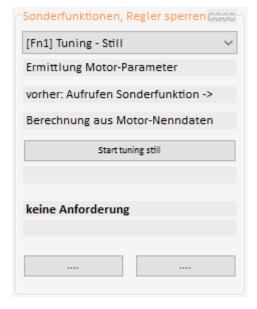

Kurzz.: **Funktion:** Bereich: **Einheit: ID-Adresse:** N nom Motordrehzahl (für FU-Autotuning) 60..65000 rpm 0x59 F nom Frequenz Motornenndrehzahl (für FU-Modus) 20..1200 Hz 0x05 Spannung bei Motor-Nenndrehzahl (für FU-Modus) U nom 0..1000 V 0x06 Cos Phi Motor-Leistungsfaktor (für FU-Modus) 0..327,00 % 0x0E I max eff Motor-Maximalstrom 0..1000,0 Arms 0x4D I nom eff Motor-Dauerstrom 0..1000,0 Arms 0x4E M-Pole Motor-Polzahl (2 x Polpaare) 2..96 Num 0x4F Id nom Nominaler Id-Magnetisierungsstrom in % vom 0..100 % 0xB2 Motor-Nennstrom (I nom eff) Id min Minimaler Magnetisierungsstrom in % vom Motor-% 0xB5 -100..0 Nennstrom (I nom eff) Κt Motor Kt Konstante Nm/A 0x87_L 0..50,000 Motor Ke Konstante (Gegen EMK) V/krpm Ke 0..500,00 0x87_H

20.2 Auto - Sonderfunktionen

20.2.1 Sonderfunktionen – Übersicht

Übersicht der einzellnen Sonderfunktion im Fenster **Sonderfunktionen** auf der Seite **Auto**.

Sonderfunktion:	Bedeutung:	ID-Adresse:
		0x85
Idle	Ruhezustand	0 dec
[Fn1] Tuning - Still	nicht benutzt	1 dec
[Fn2] Tuning - Rotierend	nicht benutzt	2 dec
[Fn3] Phasing - Still	nicht benutzt	3 dec
[Fn4] Phasing - rotierend	Automatische Erkennung vom Rotor-Offset-Winkel bei	4 dec
	Synchronmotoren (FB-Offset)	
[Fn5] DC-Bestromung	Fixer Bestromungswinkel der Phasen U, V, W mit	5 dec
	Motornennstrom	
[Fn6] Analog-Offset	Automatischer Abgleich der Analogeingänge	6 dec
[Fn7] Tacho-Offset	Automatischer Abgleich vom Segment-Offset bei	7 dec
	bl-Tacho	
[Fn8] Berechnung vom Motor	Berechnen der Motordaten nach Typenschildangaben	8 dec
Typenschild		
[Fn9] Abgleich	1. Schritt Messwertkorrektur Zwischenkreisspannung	9 dec
VdcBus Null	→ Abgleich für Messpunkt bei 0 V	
[Fn10] Abgleich	2. Schritt Messwertkorrektur Zwischenkreisspannung	10 dec
VdcBus Spannung	→ Abgleich für Messpunkt bei Referenzspannung	

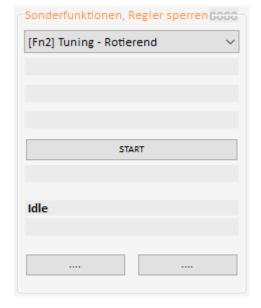


20.2.2 Sonderfunktionen – [Fn1] Tuning - Still

Funktion noch nicht freigegeben!

Aktivierung:

- 1. Auswahl [Fn1] Tuning Still
- 2. Nachricht auf der ID-Adresse 0x85 = 1



20.2.3 Sonderfunktionen - [Fn2] Tuning - Rotierend

Funktion noch nicht freigegeben!

Aktivierung:

- 1. Auswahl [Fn2] Tuning Rotierend
- 2. Nachricht auf der ID-Adresse 0x85 = 2

20.2.4 Sonderfunktionen – [Fn3] Phasing - Still

Funktion noch nicht freigegeben!

Aktivierung:

- 1. Auswahl [Fn3] Phasing Still
- 2. Nachricht auf der ID-Adresse 0x85 = 3

20.2.5 Sonderfunktionen – [Fn4] Phasing - rotierend

Ziele:

- Richtiger Anschluss der Motorleitungen (U, V, W) überprüfen.
- Eingabe der Anzahl der Motorpolzahl (M-Pole) überprüfen.
- Ermittlung des Geber Phasenwinkels (FB-Offset).

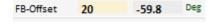
Vorbereitung Hardware:

- Der Motor muss freilaufend oder an einer geringen Last angeschlossen sein.
- Der Motor darf keine Gefahr im Fall einer unkontrollierten Beschleunigung darstellen.
- Gerät mit Leistungsspannung (Netz / HV) versorgen (Bei Geräten mit HV DC-Spannung empfiehlt es sich eine kleine DC-Spannung (12..48 V) anzulegen).

Sonderfunktionen, Regler sperren GOOO [Fn4] Phasing - rotierend Ermittlung Offset-Winkel Sensorik bei Synchronmotor, Drehzahlistwert pos. Rechtsdrehfeld eine Motorumdrehung START nach Anforderung Regler freigeben Idle

Vorbereitung Parameter:

- Motorpolzahl M-Pole (0x4F) und Geber-Polzahl FB-Pole (0xA7) muss richtig eingestellt sein.
- Reduzierung des erlaubten Stroms I max pk auf 10 % einstellen.
- Drehgeschwindigkeit für den Phasing Prozess über Speed 2
- auf 3 % der Nenndrehzahl einstellen (Bsp.: 100).



Start und Ablaufs Beschreibung:

- 1. Auswahl [Fn3] Phasing rotierend
- 2. Aktivierung der Funktion → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 4)
- 3. Nach dem Drücken von START verbleiben 10 s um die Freigabe RUN (FRG) zu aktivieren (In NDrive: Warten auf RUN = 1).
- 4. Die Stromrampe stellt den eingestellten Strom und der Motor bewegt sich mit einem Ruck zwischen 2 seiner elektrischen Pole.
- 5. Der Motor dreht sich dann rechtsdrehend (Uhrzeigersinn) für genau 360° von Pol zu Pol abhängig der Angabe der Motorpolzahl (Kann ruckartig von Pol zu Pol springen).
- Nach kurzer Zeit baut sich die Stromrampe wieder ab.
 Die Freigabe RUN (FRG) muss zum Schluss deaktiviert werden (In NDrive: Warten auf RUN = 0).

Erkenntnisse:

- Durch die langsame Rechtsdrehung ist die richtige Anordnung der U,V,W Anschlüsse bestätigt.
- Durch die **360° Drehung** ist die richtige Angabe der Motorpolzahl M-Pole (0x4F) bestätigt.
- Der ermittelte Phasenwinkel wird im rechten der beiden Felder (grau) angezeigt (hier: -59.8 Deg).
 Nach einem erfolgreichem Phasing Prozess muss der neue Wert im linken Feld (gelb) eingegeben werden und am besten auf der Seite Einstellung Eprom Ebene 0 dauerhaft speichern.

Hinweis:

• Der FB-Offset muss nur einmalig ermittelt werden und nicht nach jedem Neustart.

Seite: 110

Die Genauigkeit dieses Verfahrens ist physikalisch auf ±2 % begrenzt.
 Reicht jedoch für den allgemeinen Betrieb aus.

Fehlersituation:

- Der Motor dreht sich nicht
 - U,V,W Anschluss ist nicht richtig → Änderung unbekannt
 - o Stromgrenze evtl. zu klein oder eine zu große angeschlossen Last
 - o Der Wert von Speed 2 ist zu klein oder zu groß
- Der Motor dreht sich linksdrehend (Gegen Uhrzeigersinn)
 - ∪,V,W Anschluss ist nicht richtig → Anschluss U und W tauschen
- Der Motor dreht sich mehr oder weniger als 360°
 - o Falsche Angabe der Motorpolzahl M-Pole (0x4F) → korrigieren

Übersicht Ablauf:

Funktion:	Meldung bei NDrive:	7-Seg-Anzeige:
Funktion [Fn4] Phasing - rotierend		
auswählen und START anklicken		
Innerhalb 10 Sekunden Freigabe	Warten auf RUN = 1	40
einschalten	(Freigabe RUN (FRG) einschalten)	
Freigabe geschlossen	Stromrampe	41
Strom aufgebaut (Drehbewegung	Nennwert erreicht	42
beginnt)		
Polwinkel und Motor-Polzahlerkennung	Drehfeld ausgeben	43
durchgeführt		
Ende korrekt	Ende	49
	Ende, Warten auf RUN = 0	
	(Freigabe RUN (FRG) abschalten)	

Abbruch bei Fehler:

Funktion:	Meldung bei NDrive:	7-Seg-Anzeige:
Freigabe abgeschaltet während	Error	47
Messvorgang		
Time out, Messzeit überschritten		48

20.2.6 Sonderfunktionen – [Fn5] DC-Bestromung

Durch Vorgabe eines Bestromungswinkels (Angle) wird der Rotor (Motorwelle) in diesen Winkel bewegt und gehalten (kein Drehfeld).

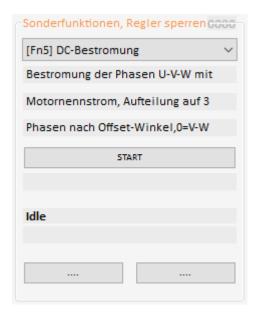
Start und Ablaufs Beschreibung:

- 1. Auswahl von [Fn5] DC-Bestromung
- 2. Stromgrenze Nennstrom I nom eff reduzieren auf 30 %.
- 3. Den gewünschten elektrischen Winkel unter FB-Offset (0x44) vorgeben.
- 4. Gerät mit Leistungsspannung (Netz / HV) versorgen
- 5. Funktion aktivieren → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 5)
- 6. Freigabe RUN (FRG) einschalten

Ergebnis:

- Die Motorwelle dreht und stellt sich auf den vorgegebenen Winkel mit dem maximal möglichen Strom.
- Solange die Freigabe gesetzt ist, kann ein neuer Winkel für FB-Offset (0x44) im linken Feld (gelb) vorgegeben werden.

Seite: 112


• Das Abschalten der Freigabe RUN (FRG) beendet die Funktion.

Achtung:

Vor weiterem motorischem Betrieb muss der richtige Wert für FB-Offset wieder eingegeben und abgespeichert (Eprom Ebene 0) werden.

Bei falschem Wert für FB-Offset kann sich der Antrieb unkontrolliert drehen oder bewegen!

20.2.7 Sonderfunktionen – [Fn6] Analog-Offset

Funktion noch nicht freigegeben!

Aktivierung:

- 1. Auswahl [Fn6] Analog-Offset
- 2. Nachricht auf der ID-Adresse 0x85 = 6

Momentan muss die Streuung der Analogen Eingänge über die Einstellungen der Analogen Parameter (Offset, Nullzone, und Scale) angepasst werden

20.2.8 Sonderfunktionen – [Fn7] Tacho-Offset

Abgleich von Segment-Offset-Fehler bei bürstenlosen Tachosystemen.

Start und Ablaufs Beschreibung:

- 1. Auswahl von [Fn7] Tacho-Offset
- Funktion aktivieren → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 7)
- 3. Freigabe RUN (FRG) einschalten
- 4. Nach einem erfolgreichem Tacho-Offset muss man den internen ermittelte Wert auf der Seite Einstellung im Eprom Ebene 0 dauerhaft speichern.

Übersicht Ablauf:

Funktion	Meldung bei NDrive:	7-Seg-Anzeige:
Funktion Start Tacho Offset anklicken		70
Freigabe RUN (FRG) einschalten		
Ende korrekt		79

Abbruch bei Fehler:

Funktion:	Meldung bei NDrive:	7-Seg-Anzeige:
Freigabe eingeschaltet während		76
Messvorgang		
Bewegung am Rotor erkannt		77
Kein Tacho angeschlossen		78

20.2.9 Sonderfunktionen – [Fn8] Berechnung von Motor Typenschild

Berechnung der Motordaten für Asynchronmotoren.

Start und Ablaufs Beschreibung:

- 1. Motordaten im Fenster **Motor-Parameter** in die linken Feldern (gelb) eingeben.
- 2. Auswahl von [Fn8] Berechnung von Motor Typenschild
- 3. Funktion aktivieren → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 8)

Nach Ablauf der Berechnung sind die errechneten Werte in der rechten Spalte (grau) angezeigt.

Für eine dauerhafte Speicherung muss man die Daten am besten auf der Seite Einstellung im Eprom Ebene 0 dauerhaft speichern.

Übersicht des Motor-Parameter Feldes auf der Seite Auto.

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
L sigma-q	q-Komponente der Stator Streuinduktivität	065,535	mH	0xB1
	(bei ACIM ist Lsd = Lsq)			
L sigma-d	d-Komponente der Stator Streuinduktivität	065,535	mH	0xBB
R stator	Stator Widerstand ¹	065535	mOhm	0xBC
TC Stator	Statorzeitkonstante (Ls/Rs) ²	032767	ms	0xB6
L magnet	Hauptinduktivität	0655,35	mH	0xB3
R rotor	Rotor Widerstand ¹	065535	mOhm	0xB4
TC Rotor	Rotorzeitkonstante (Lm/Rr) ²	02000	ms	0xBD
FB-Offset	Geber Offsetwinkel ±360 Deg 0x44		0x44	
¹ Eingabe erfolgt ohne Komma				

² Berechnung erfolgt intern

Allgemeines

In diversen Literaturen gibt es Darstellungen des Motormodells, die im Prinzip alle untereinander identisch sind. Verwendete Abkürzungen können zum Teil unterschiedlich sein. Unterschiede gibt es jeweilig nur noch in der Nähe zu physikalisch messbaren Größen (T-Modell), bzw. weitergehender Abstrahierung für vereinfachte Rechenmodelle (inverses Gamma-Modell).

Manche Hersteller liefern zusätzliche Werte wie Polzahl, Leerlaufstrom bei einer definierten Leerlaufspannung (= Magnetisierungsstrom), Ohmscher Widerstand der Statorwicklungen, Statorimpedanz bei definierter Frequenz, sowie Werte auf den rotorbezogenen Größen.

Diese Angaben der Hersteller sind in der Regel hilfreich und korrekt. Die realen, physikalischen Größen können messtechnisch erfasst werden. Bei auf den Stator bezogenen Werten durch direkte Messung. Bei auf den Rotor bezogenen Werten indirekt, durch Messung der Rückwirkung auf den Stator. Die Darstellung in den Motormodellen bezieht sich zum Teil nicht mehr auf die realen physikalischen Größen, sondern auf umgerechnete Größen.

Seite: 116

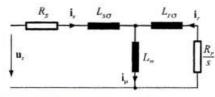


Bild 1: T-Modell, stationary,[2]

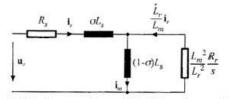


Bild 2: inverses Gamma Modell, stationary,[2]

Rs Statorwiderstand ir Strom in Rotor Lm Hauptinduktivität Lrσ Rotor Streuinduktivität im Magnetisierungsstrom

Rr Rotorwiderstand

Stator Streuinduktivität Lsσ

iμ Strom durch Lm gesamter Streufaktor σ

Grundsätzliches Vorgehen

Bei neuen oder unbekannten Motoren kann in der Betriebsart FU, Seite Einstellungen "Typ", zuerst folgende Zuordnung geprüft werden: positiver Drehzahlsollwert = Rechtsdrehfeld U, V, W = Drehung im Uhrzeigersinn = positiver Drehzahlistwert. Werte auf Seite "Einstellugen", FU linkes Feld nach U/f-Kennlinie einstellen. Bei Betrieb im Nennpunkt ohne Last ergibt sich ca. Magnetisierungsstrom.

Optimierungsvorgang

Eine Belastungsmaschine mit ca. 20 bis 50 % vom Nennmoment ankoppeln. Vorgabe eines konstanten Drehmoments im NDrive über das Test Bedienfeld (links unten). Als Ergebnis stellt sich eine stationäre Drehzahl ein.

Bei drehender Maschine kann der Wert von Lm oder Rr verändert werden, (T-Rotor = Lm/Rr). Die Auswirkung wird in der Regelung sofort wirksam. Ziel ist die Optimierung von T-Rotor auf eine höhere, resultierende Drehzahl bei gleicher Last. Das Resultat im Betrieb ist eine geringere Stromaufnahme bei gleichem Lastmoment.

Der Wert von T-Rotor in ms wird erst bei dem Vorgang offline-online von NDrive aktualisiert.

In einer zweiten Stufe kann Id nom (NDrive Seite Drehzahl) variiert werden, keine Feldschwächung aktiv (Vred = 0). Einfach zu beobachten im Stillstand (Strom = Magnetisierungsstrom). Bei drehender Maschine wird der Wert wiederum ebenfalls sofort wirksam. Ziel ist wieder eine höhere, resultierende Drehzahl bei gleicher Last. Das Resultat im Betrieb ist eine höhere Enddrehzahl bei Erreichen der Spannungsgrenze (maximale Modulation).

Testweise ermittelte Werte mit gegebenenfalls vorhandenen Werten vom Hersteller vergleichen. Speichern und den Servo resetten (Off-On). Werte und Funktion erneut prüfen.

20.2.10 Sonderfunktionen – [Fn9] [Fn10] VdcBus Abgleich

Kalibrierung der analogen VdcBus Zwischenkreismessung (Geräteabhängig) ab der Firmware 466.

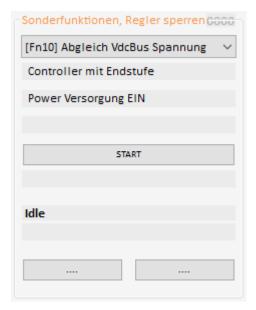
Die Kalibrierung erfolgt in 2 Schritten bei denen zum einen der Nullpunkt ermittelt wird ([Fn9] Abgleich VdcBus Null) und zum anderen der entsprechende Referenzpunkt ([Fn10] Abgleich VdcBus Spannung). Grundsätzlich werden alle Geräte bereits im Werk kalibriert.

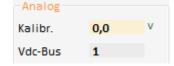
Beim Austausch einer Komponente muss der Abgleich neu durchgeführt werden.

Schritt 1: [Fn9] Abgleich VdcBus Null

Start und Ablaufbeschreibung:

- 1. Für den automatischen Abgleich muss Command Mode auf Dig. Commands eingestellt sein.
- 2. Auswahl von [Fn9] Abgleich VdcBus Null
- 3. An den VdcBus U+ und U- Anschlüssen keine Spannung anlegen (Für Bamobil-Geräte bitte U+ und U- kurzschließen)
- 4. Funktion aktivieren → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 9)
- 5. Nach ca. 4 s informiert die Meldung "Ende" den erfogreichen VdcBus Null Abgleich.




Schritt 2: [Fn10] Abgleich VdcBus Spannung

Start und Ablaufbeschreibung:

- 1. Für den automatischen Abgleich muss Command Mode auf Dig. Commands eingestellt sein.
- 2. Auswahl von [Fn10] Abgleich VdcBus Spannung
- 3. An den VdcBus U+ und U- Anschlüssen eine konstante DC Spannung mit min. 2/3 der Geräte Nennspannung anlegen.
- 4. Die Zwischenkreisspannung mit einem Voltmeter messen.
- 5. Im Parameter Feld **Kalibr.** (0x1A) muss der gemessene Spannungswert als Referenz eingegeben werden.
- Funktion aktivieren → START drücken (oder Nachricht auf der ID-Adresse 0x85 = 10)
- 7. Nach ca. 4 s informiert die Meldung "Ende" den erfogreichen VdcBus Referenzpunkt Abgleich.

Die internen berechneten Kalibrierungspunkte müssen zum Schluss auf der Seite Einstellung in der Eprom Ebene 0 und 1 dauerhaft gespeichert werden.

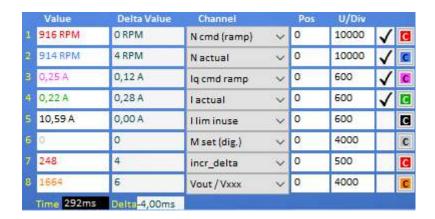
Hinweis:

Falls die Kalibrierpunkte zu stark von der Norm abweichen werden Default Werte genommen.

21 Oszilloskop

21.1 Oszilloskop – Gesammtübersicht

Übersicht der Seite **Oszilloskop** in NDrive mit kompakter Parameter-Übersicht für Umrichter spezifische Parameter, Step Generator und dem Menü für die Einstellungen des Oszilloskops.



21.2 Oszilloskop – Einstellungen und Anzeige

21.2.1 Oszilloskop – Signal-Auswahl

Übersicht der Auswahl der bis zu 8 Kanälen (Signale) und Beschreibung der einzellnen Felder auf der Seite Oszilloskop.

Feld:	Funktion:	
Value	Werte bei der ersten Cursor-Linie (numerisch oder physikalisch (wenn vorhanden)).	
Time	Zeit ab der Trigger-Linie bis zur ersten Cursor-Linie.	
Delta Value	Differenzwerte vom ersten bis zum zweiten Cursor.	
Delta (Time)	Differenzzeit vom ersten bis zum zweiten Cursor.	
Channel	Auswahl des zu messenden Signals und somit Zuweisung der Kanalnummer. Bei -Off- ist der Kanal abgeschaltet.	
Pos	Verschiebung der Nulllinie für diesen Kanal in positiver oder negativer Richtung. Die Eingabe von 100 entspricht eine vertikale Verschiebung des Signals um ein Raster. Das Verhältnis ist abhängig vom gemessenen Wert.	
U/Div	Numerische Einheiten für die Einstellung der vertikalen-Raster-Linie.	
	D.h. mit U/Div = 10000 bei N cmd (ramp) entspricht der numerische Wert von 10000 gleich einer Horizontallinie.	
	Der Bezug richtet sich immer nach dem Numerischen und nicht dem Physikalischen Wert.	
Schaltkasten	Die Darstellung des Kanals wird ein- und ausgeschaltet.	
	Der ausgeschaltete Kanal bleibt im Hintergrund und wird auch mit abgespeichert.	
Kanalfarben	Durch Anklicken der Farbtaste C kann die Farbe des Messsignals im Oszilloskop-Fenster	
	über das Farb-Auswahlfenster geändert werden.	
	die Linie auf der der Trigger definiert wurde. ie ist die Linie die mit dem Drücken der linken Maustaste gesetzt wird.	

Seite: 120

Die zweite Cursor Linie ist die Linie bei der sich der Mauszeiger befindet.

21.2.2 Oszilloskop – Übersicht Trigger und Capture Einstellung

Übersicht der Trigger und Capture Einstellungen.

Trigger:	Funktion:
On	Auswahl des Signals für die Trigger-Funktion
Edge	Auswahl der Trigger-Funktion in Bezug auf die Auswahl im Feld On
Level	Einstellung des Trigger-Levels (Numerisch) abhängig der Trigger-
	Funktion und des ausgewählten Signals

Capture:	Funktion:	
Buf	Auflösung bzw. Anzahl der Messpunkte aufgeteilt auf alle	
	verwendeten Kanäle	
Run	Auswahl Trigger-Schaltfunktion	
Timescale	Zeiteinheit pro horizontaler Gitterlinie	
Pre trig	Horizontale Verschiebung der Trigger-Linie	
	Messwertdarstellung vor der Trigger-Linie möglich	

Die Anzahl der Messpunkten im NDrive Software Oszilloskop ist wie bei einem echten Oszilloskop abhängig auf den Einstellungen der Zeitbasis (Timescale). Somit sind auch die Abstände der Messpunkte zueinander abhängig von dieser Einstellungen. **Es ist also kein Datenlogger**.

D.h. ein nachträgliches Hereinzoomen bei einer langen Timescale Einstellung kann nicht eine detailiertere Ansicht der Messpunkte in einem kleineren Zeitbereich anzeigen. Man muss sich im Klaren sein, auf welcher Zeitbasis gemessen wird.

21.2.3 Oszilloskop – Beschreibung der Trigger und Capture Einstellungen

On:

Die Auswahl des Signals für die Trigger-Funktion wird über das Pulldown-Menü ausgewählt. Hierbei kann entweder ein bestimmter Kanal (1..8) oder ein Signal das im Pulldown-Menü aufgelistet ist, auch wenn es nicht in einem der Kanäle definiert ist, genommen werden.

Edge:

Kurzz.:	Trigger Beschreibung: (Immer in Bezug zu dem Wert in Level)
Rise > Lev	Das Signal durchschreitet von einem kleineren zu einem größeren des eingestellten
	Level Werts → Positive Flanke .
Rise < Lev	Das Signal durchschreitet von einem größeren zu einem kleineren des eingestellten
	Level Werts → Negative Flanke .
Rise or Fall	Das Signal durchschreitet eine positive oder negative Flanke des eingestellten Level
	Werts.
=Lev	Das Signal ist gleich dem eingestellten Level Wert.
!= Lev	Das Signal ist ungleich dem eingestellten Level Wert.
> Lev	Das Signal ist größer dem eingestellten Level Wert.
< Lev	Das Signal ist kleiner dem eingestellten Level Wert.

Level:

Dieser numerische Wert ist der Bezug für die Auswahl der Triggerfunktion in Edge.

Hinweis:

Änderungen werden nur übernommen wenn die Aktivierungsfunktion einer Messung (Run/Stop) auf Stop gestellt ist.

Oszilloskop

Buf:

Die Anzahl der Messpunkte von 250, 500, 1000 oder 2000 für alle 8 Kanale definiert gleichzeitig die Detailierung der Messung.

Bei einer **Buf** Einstellung von 2000 und nur 2 aktivierten Kanälen erhält jeder Kanal 1000 Messpunkte Empfehlung: 2000

Run:

Kurzz.:	Funktion:
Auto	Fortlaufende Messung ohne das eine Trigger-Funktion erkannt werden muss.
Single	Bei einer erkannten Trigger-Funktion wird eine Messung durchgeführt.
	Danach wird automatisch die Aktivierungsfunktion (Run / Stop) auf Stop gestellt.
Normal	Bei jeder erkannten Trigger-Funktion wird eine Messung durchgeführt.

Timescale:

Die Zeiteinheit (Timescale) pro horizontaler Unterteilung definiert nicht nur die Zeiteinheit der Darstellung im Oszilloskop-Fenster sondern es wird definiert in welchen Delta Abständen ein Messpunkt eines Kanals gemessen wird. Generell gilt das zwischen jeden Raster einer horizontalen Unterteilung ein Kanal 50 Messpunkte hat.

D.h. das bei einer Timescale Einstellung von 500 ms das Delta eines Messpunkts gleich 10 ms ist (Messpunkt Delta = Timescale / 50 = 500 ms / 50 = 10 ms).

Pre Trig:

Der Tre trig verschiebt die Trigger-Funktion um die ensprechende Einstellung abhängig der Timscale Einstellung. Es erlaubt Ereignisse vor dem eigentlichen Trigger zu betrachten.

Hinweis:

- Mit der Trigger-Funktion (Edge: != Lev) auf dem Signal I_actual und Capture (Run: Single) Einstellung, lässt sich einfach ein "Force Trigger" mit einmaliger Aufzeichnung auslösen.
- Wenn der Pre trig größer 0 % ist, kann es zu Überlappungen der Darstellung im Oszilloskop-Fenster kommen. Dies passiert wenn ein neuer Trigger erkannt wird während der Übertragungszeit.
 Dies geschieht besonders bei der Einstellung von Run = Auto. Es empfiehlt sich dann einen Pre trig von 0 % zu verwenden.

21.2.4 Oszilloskop – Messung Aktivieren

Übersicht der Aktivierungsfunktion einer Messung für das Oszilloskop.

Run / Stop:	Symbol:	Funktion:
Run	►Run	Mit dem Tastenfeld Run wird die Oszilloskop-Aufzeichnung scharf gestellt Beim nächsten Trigger Signal wird die Aufzeichnung gestartet
Stop	Stop	Mit dem Tastenfeld Stop wird die Aufzeichnung gestoppt und verworfen Die aktuelle Anzeige wird eingefroren

21.2.5 Oszilloskop – Statusanzeige

Übersicht der Statusanzeige für das Oszilloskop.

Status:	Farbe:	Funktion:
waiting (0)	Rot	Messung ist aktiviert (Run) und warten auf ein neues Trigger-Ereignis
waiting (xx)	Grün	Messung wurde getriggert und Daten werden im Servo
		zwischengespeichert
reading	Blau	Messung ist beendet und Daten werden vom Servo an den PC geschickt
drawing		Darstellen der Daten im Oszilloskop-Fenster
idle	Weiß	Messung ist deaktiviert (Stop)

21.2.6 Oszilloskop – Zoom Optionen

Übersicht der Zoom Optionen einer Messung im Oszilloskop-Fenster.

Zoom:	Symbol:	Funktion:
Zoom [+]	\oplus	Messung im Oszilloskop-Fenster wird vergrößert abhängig der ausgewählten Koordinaten Richtung.
Zoom [-]	Q	Messung im Oszilloskop-Fenster wird verkleinert abhängig der ausgewählten Koordinaten Richtung.

Zoom Achsen	Symbol:	Funktion:
Richtung:		
[X] und [Y] - Achse	W.W	Messung wird bei dieser Auswahl auf der X- und Y-Achse
	X+Y	vergrößert (→ Zoom [+]) oder verkleinert (→ Zoom [-])
[X] - Achse	-	Messung wird bei dieser Auswahl auf der X-Achse
	X	vergrößert (→ Zoom [+]) oder verkleinert (→ Zoom [-])
[Y] - Achse		Messung wird bei dieser Auswahl auf der Y-Achse
	Υ	vergrößert (→ Zoom [+]) oder verkleinert (→ Zoom [-])

Hinweis:

Es wird nur die Darstellung vergrößert. Die Anzahl der Messpunkte ist abhängig von der Timescale-Einstellung und bleibt unabhängig der Zoom-Einstellung immer gleich.

21.2.7 Oszilloskop – Liniendicke (Stift)

Über das Symbol **Stift** kann man zwischen 3 verschiedenen dicken der Messlinien auswählen. Hierbei wird die Linendicke aller 8 Messkanäle verändert.

21.2.8 Oszilloskop – Speichern und Laden von Messungen

Übersicht der Speicher and Lade Optionen einer Oszilloskop Messung.

File *.uof	Symbol:	Funktion:
Laden .uof Datei		Messung von einer UniTek Oszilloskop-Datei (.uof) laden
Speichern .uof Datei		Messung als UniTek Oszilloskop-Datei (.uof) speichern
Speichern .csv Datei		Messung als Excel-Datei (.csv) speichern

Hinweis:

- Messungen im .uof Format können im NDrive Oszilloskop (auch im Offline Modus) geladen, verändert und wieder gespeichert werden.
- Messungen im .csv Format können nicht nachträglich im NDrive Oszilloskop geladen und betrachtet werden (d.h. unbrauchbar für spätere Analysen).

21.2.9 Oszillokop – Oszilloskop-Fenster Anpassen

Übersicht der Möglichkeiten das Oszilloskop-Fenster einzustellen sowie spezielle Darstellung einer Messung.

Option:	Funktion:
Join	Messpunkte verbinden (Interpoliert)
Over	Anzeige bleibt bestehen und wird überschrieben
Zero	Null-Linie sichtbar
Units	Anzeige Num oder reale Werte (wenn vorhanden)
Trig	Trigger Linie sichtbar
Label	Kanalbezeichnung sichtbar
AbsDelta	Function not yet activated
InvColour	Alle Farber Invertieren

Symbol:	Einstellungen:
В	Hintergrund-Farbe
K	Raster-Linien-Farbe
Z	Cursor-Linien-Farbe
T	Trigger-Linien-Farbe

21.2.10 Oszillokop – Messwert-Anzeige

Messwerte Anzeige:

- Die Aufzeichnungen der Messwerte werden in den ausgewählten Farben dargestellt.
- Messwerte können über das Haken-Symbol angezeigt oder ausgeblendet werden.
- Mit dem Haken-Symbol im Kasten **Units** werden die angezeigten Werte von numerischen Werten auf physikalische Werte umgeschaltet, falls die Konvertierung für das Signal zur Verfügung steht.

Trigger-Linie:

• Die **erste Trigger-Linie (vertikal)** ist durch ein Pfeilsymbol am oberen und unteren Bildrand markiert. Diese wird durch die Trigger Einstellung über den **Pre Trig** definiert.

Seite: 125

• Die zweite Trigger-Linie (horizontal) ist durch ein Pfeilsymbol am linken Bildrand markiert. Diese wird durch die Trigger Einstellung über das Level definiert.

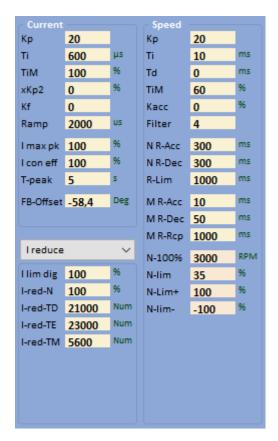
Oszilloskop

Cursor-Linie:

- Die **erste Cursor-Linie (durchgezogene Kreuzlinie)** befindet sich immer dort, wo der **Mauszeiger** sich befindet.
 - Abhängig dieser Position wird für jede Messvariable der dort befindliche Wert bei Value angezeigt.
- Die zweite Cursor-Linie (gestrichelte vertikale Linie) wird vom Anwender (linke Maustaste) abhängig der aktuellen Position der ersten Cursor-Linie definiert.
 - Im Feld **Delta Value** wird für jeden Messwert der **Differenzwert** zwischen der ersten und der zweiten Cursor-Linie dargestellt.

Time:

- Im Fenster **Time** wird die Zeit ab der ersten Trigger-Linie (vertikal) bis zur ersten Cursor-Linie (durchgezogene Kreuzlinie) angezeigt.
- Im Fenster **Delta (Time)** wird die Zeit ab der zweiten Cursor-Linie (gestrichelte vertikale Linie) bis zur ersten Cursor-Linie (durchgezogene Kreuzlinie) angezeigt.


Seite: 126

21.2.11 Oszillokop – Parameter auf der Seite Oszilloskop

Die Seite Oszilloskop beinhaltet eine kompakte Auswahl an wichtigen Parametern für eine direkte Änderung während man mit dem Oszilloskop Messungen durchführt.

Im Bereich abhängig der Auswahl des Pulldown-Menü (hier: I reduce), können verschiedene Blöcke an Parametern eingeblendet werden.

Die Änderungen werden im aktuellen Parametersatz im RAM-Speicher und automatisch in den anderen Reitern übernommen.

22 Testbetrieb

22.1 Testbetrieb - Test

Achtung:

Dieses Feld ist nur für den Testbetrieb gedacht.

Das Test-Feld ermöglicht es direkte digitale Sollwert Befehle für entweder Drehzahl (N), Moment (Iq) oder Position zu senden. Es eignet sich hierdurch sehr gut für einen allgemeinen Testbetrieb.

Um die Funktionen vom Test-Feld verwenden zu können muss der Betriebsmodus **Command Mode** auf **Dig. Commands** eingestellt sein.

Testbetrieb Sollwert Vorgabe von Drehzahl (N) oder Moment (Iq)

- Die Vorgabe von einem Drehzahl (N)- oder Moment (Iq)-Sollwert wird über die entsprechende Auswahl im Pulldown-Menü definiert.
- Der Numerischen Sollwert wird im linken Feld eingeben (Bereich: 0..32767).
- Beim Anklicken der (+) oder (-) Taste wird der eingegebene Sollwert sofort ausgeführt. Beim Anklicken der Stop-Taste (O) wird der Sollwert null vorgegeben.

Testbetrieb von Sollwert Vorgabe Position und Referenz-Zyklus

- Numerischen Positions-Sollwert im linken Feld eingeben (Bereich: ±2147483647).
- Beim Anklicken der Taste (Dest.) fährt der Antrieb sofort, mit der bei N max gewählten Geschwindigkeit, auf den eingegebenen Positions-Sollwert.
- Beim Anklicken der Taste (Calib) fährt der Antrieb einen Referenz-Zyklus.
- Mit der Taste (P.) wird die eingegebene numerische Position als Ist-Position und als Soll-Position übernommen.

Dis Software-Freigabe (Nur bei aktiver Hardware-Freigabe)
Über den Button Dis kann man die Freigabe Sperren (rot) und wieder Freigeben (grau) werden.

22.2 Testbetrieb - Stepgenerator

Stepgenerator zur Ausgabe von bis zu 3 zyklischen wiederholenden Sollwerten.

Vorgabe:	Funktion:	Bereich:
Magnetisierung (Id)	Blindstrom (Id) Vorgabe	±32767
	\rightarrow Id set (dig.)	
Moment (Iq)	Wirkstrom (Iq) Vorgabe	±32767
	→ M_set (dig.)	
Drehzahl (N)	Drehzahl (N) als Vorgabe	±32767
	→ n_cmd	
Position (P)	Positions-Ziel als Vorgabe	±2147483647
	→ Pos dest	
2 Step	Auswahl 2 oder 3 Steps	

Auswahl:	Funktion:	Bereich:
Step1	Wert 1	Siehe Vorgabe
	(Strom (Id, Iq), Drehzahl oder Position)	
Time1	Zeit für Wert 1	032767
Step2	Wert 2	Siehe Vorgabe
	(Strom (Id, Iq), Drehzahl oder Position)	
Time2	Zeit für Wert 2	032767
Step 3	Wert 3	Siehe Vorgabe
	(Strom (Id, Iq), Drehzahl oder Position)	
Time 3	Zeit für Wert 3	032767
Start	Startet oder Stoppt die Generatorfunktion	
Stop		

Hinweis:

Die Zeiteingaben (Time) können bei Werten >2000 je nach PC variieren.

Mit dem Stepgenerator werden Sollwert-Sprungfunktionen vorgegeben. Die Rampen werden in den Parameter-Einstellungen für Strom- und Drehzahlregler bestimmt.

Bei aktiver Regler Freigabe (RUN) wird der Antrieb durch Anklicken des Schaltfeldes **Start** gestartet und mit **Stop** gestoppt. Die Funktionen können als Magnetisierung (Id), Moment (Iq) und Drehzahl (N) oder Positionswerte ausgewählt werden. Der Wert für Stop ist bei Magnetisierung (Id), Moment (Iq) und Drehzahl (N) der Wert gleich 0.

Seite: 128

Besonders beachten:

Bei begrenztem Verfahrweg ist sicher zu stellen, dass bei den Testeinstellungen der Verfahrweg innerhalb der Maschinen-Grenzen liegt.

Bei der Testeinstellung Magnetisierung (Id) und Moment (Iq) kann der Antrieb mit maximaler Drehzahl drehen.

Bei Feldschwächung kann Überdrehzahl erreicht werden.

23.1 Messwerte (RO) – Übersicht

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Firmware Nr.	Software Firmware Nummer (protected)	09999	Num	0x1B
Туре	Geräte-Bezeichnung (protected)	0255	Num	0x67 _{Bit70}
S-Nr.	Seriennummer Gerät (protected)	32 Bit - 1	Num	0x62
Status	Aktuelle Status-Information	32 Bit - 1	Bitmask	0x40
Fehler-Warning	Aktuelle Fehler- und Warning-Information	32 Bit - 1	Bitmask	0x8F
Fehler	Aktuelle Fehler-Information	032767	Bitmask	0x8F _L
Warning	Aktuelle Warnung-Information	032767	Bitmask	0x8F _H
Ain1 ein	Analog-Eingang 1	±32767	Num	0xD5
Ain2 ein	Analog-Eingang 2	±32767	Num	0xD6
Ain1 skaliert	Analog-Eingang 1 skaliert	±32767	Num	0xFB
Ain2 skaliert	Analog-Eingang 2 skaliert	±32767	Num	0xFC
N cmd (int)	Verwendeter Drehzahl-Sollwert (intern)	±32767	Num	0x5D
N cmd (ramp)	Drehzahl-Sollwert nach Rampe	±32767	Num	0x32
N actual	Drehzahlistwert	±32767	Num	0x30
N act (filt)	Drehzahlistwert gefiltert für Anzeige	±32767	Num	0xA8
N error	Drehzahl Soll-Istwert-Fehler	±32767	Num	0x33
M cmd ramp	Wirkstrom (Iq) Sollwert (skaliert) nach Rampe	±32767	Num	0x3A _L
M out	Aktueller Wirkstrom (Iq) (skaliert)	±32767	Num	0xA0
Iq cmd	Wirkstrom (Iq) Sollwert (intern)	±2000	Num	0x26
Iq cmd ramp	Wirkstrom (Iq) Sollwert (intern) nach Rampe	±2000	Num	0x22
	und Begrenzung			
Id cmd	Blindstrom (Id) Sollwert (intern)	±2000	Num	0x23
I lim inuse	Aktuelle Stromgrenze (intern)	±2000	Num	0x48
I lim inuse ramp	Aktuelle Stromgrenze (intern) nach Rampe	±2000	Num	0x57
I2_adc	ADC Spannung des Stromistwerts Sensor 2	2048	Num	0xAA
		(±2000)		
I3_adc	ADC Spannung des Stromistwerts Sensor 3	2048	Num	0xA9
		(±2000)		
I1 actual	Stromistwert Phase 1	±2000	Num	0x54
12 actual	Stromistwert Phase 2	±2000	Num	0x55
13 actual	Stromistwert Phase 3	±2000	Num	0x56
I actual	Summenstrom (I)	±2000	Num	0x20
I act (filt)	Summenstrom (I) nach Anzeigefilter	±2000	Num	0x5F
Iq actual	Aktueller Wirkstrom (Iq)	±2000	Num	0x27
Id actual	Aktueller Blindstrom (Id)	±2000	Num	0x28
lq error	Regelfehler Wirkstrom (Iq)	±2000	Num	0x38
Id error	Regelfehler Blindstrom (Id)	±2000	Num	0x39
32 Bit - 1 \rightarrow 2 ³² - 1 = 4.29 ±32 Bit - 1 \rightarrow ±2 ³²⁻¹ - 1 =				

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Vemf	Aktueller Vemf-Spannungsanteil	±4096	Num	0x29 _H
Vq	Aktueller Vq-Spannungsanteil	±4096	Num	0x29 _L
Vd	Aktueller Vd-Spannungsanteil	±4096	Num	0x2A _L
Vout	Aktuelle Ausgangsspannung	±4096	Num	0x8A _L
Vdc-Bat	Messwert der Zwischenkreisspannung	032767	Num	0x66
Vdc-Bus (filt)	Messwert der Zwischenkreisspannung gefiltert	032767	Num	0xEB
Pos dest	Vorgabe Sollposition	±32 Bit - 1	Num	0x6E
Pos cmd	Verwendete Sollpostion (intern)	±32 Bit - 1	Num	0x91
Pos aktuell	Positions-Istwert	±32 Bit - 1	Num	0x6D
Pos error	Regelfehler Positions-Istwert	±32 Bit - 1	Num	0x70
Zero-Capture	Absolutwert Nulldurchgang beim Resolver	065535	Num	0x74
InOut Block	Digital-Ein- und Ausgang Bitmaske	032767	Bitmask	0xD8
in Limit1	Digital-Eingang LMT1	032707	Bit	0xE4
in Limit2	Digital-Eingang LMT2	0/1	Bit	0xE4
in Din1	Digital-Eingang IN1	0/1	Bit	0xE6
in Din2	Digital-Eingang IN2	0/1	Bit	0xE7
in Run (Frg)	Digital-Eingang Reglerfreigabe RUN	0/1	Bit	0xE7
I Fault	Int. Fehlermeldung vom Leistungsteil	0/1	Bit	0xE9
I Regen	Ballastschaltungs-Zustand	0/1	Bit	0xEA
I Voltage Err	Überspannungs-Meldung (Nur bei Servo	0/1	Bit	0xEB
LL accOfCianal	Geräten mit digitaler Vdc-Bus Messung)	0/1	D:+	OVEC
I LossOfSignal	Hardware Resolversignal Fehler Meldung	0/1	Bit	0xEC
out Dout1	Digital-Ausgang OUT1	0/1	Bit	0xE0
out Dout2	Digital-Ausgang OUT2	0/1	Bit	0xE1
out Dout3	Digital-Ausgang OUT3	0/1	Bit	0xDE
out Dout4	Digital-Ausgang OUT4	0/1	Bit	0xDF
out Rdy (BTB)	Betriebsbereit-Meldung RDY	0/1	Bit	0xE2
O Go	Interne Freigabe GO	0/1	Bit	0xE3
O Brake	Bremse aktiv BRK1	0/1	Bit	0xF2
O Icns	Reduzierung auf Dauerstrom Icns	0/1	Bit	0xF3
O Less NO	Drehzahl kleiner 0.1 %	0/1	Bit	0xF5
O Toler	Inerhalb der Positions- Toleranz	0/1	Bit	0xF4
incr_delta	Differenz Rotorposition nach Abtastzeit	032767	Num	0x41
MotorPos mech	Rotorposition mechanisch	032767	Num	0x42
MotorPos elek	Rotorposition elektrisch	032767	Num	0x43
Rotor	Rotorlagesignale (RST) (0 oder 7 = Fehler)	16	Num	0x5C
pwm1 (1/2)	Pulsweitenmodulation Phase 1	750	Num	0xAC
2 (2 (2)		(±750)	ļ	0.45
pwm2 (3/4)	Pulsweitenmodulation Phase 2	750	Num	0xAD
2 (= (5)		(±750)	ļ	0.4-
pwm3 (5/6)	Pulsweitenmodulation Phase 3	750	Num	0xAE
32 Bit - 1 \rightarrow 2 ³² - 1 = 4.29	M 967 295	(±750)]	
$\pm 32 \text{ Bit} - 1 \rightarrow 2^{32} - 1 = 4.25$ $\pm 32 \text{ Bit} - 1 \rightarrow \pm 2^{32-1} - 1 = 1$				

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
T-motor	Motor-Temperatur	032767	Num	0x49
T-igbt	Endstufen-Temperatur	032767	Num	0x4A
T-air	Luft-Temperatur (Gerät Innenraum)	032767	Num	0x4B
Ixt & Ballast-	Monitor von Ixt & Regen Circuite		Num	0x45
Energie				
Ixt	Ixt Monitoring	032767	Num	0x45∟
Ballast-Energie	Ballast-Energie Monitoring	032767	Num	0х45 _н
Ballast Count	Ballast-Leistungs-Überwachung	032767	Num	0xA1
fpga Status	ECODE vom FPGA Baustein	032767	Bitmask	0x63
fpga 1. Fehler	ECODE vom FPGA Baustein vom ersten	032767	Bitmask	0x94
	erkannten Fehler			
Logic (Hz)	Haupt Verarbeitungsfrequenz	065000	Hz	0xAB
Ctrl	Control Status	32 Bit - 1	Num	0x11
Temp-Debug	nur für Service	±32767	Num	0x9A
*PTR1	nur für Service	±32767	Num	0xB8
*PTR2	nur für Service	±32767	Num	0xBA
32 Bit - 1 \rightarrow 2 ³² - 1 = 4.2				
$\pm 32 \text{ Bit} - 1 \rightarrow \pm 2^{32-1} - 1 =$	±2.147.483.647			

23.2 Parameter (RW / SP) – Übersicht

Parameter – Motor

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Typ ¹	Auswahl Motorart (EC-Servo, FU, FU-Servo, DC)			0x5A _{Bit 1312}
N nom	Motordrehzahl (für FU-Autotuning)	6065000	rpm	0x59
F nom	Frequenz Motornenndrezahl (für FU-Modus)	201200	Hz	0x05
U nom	Spannung bei Motor-Nenndrehzahl (für FU-Modus)	01000	V	0x06
Cos Phi	Motor-Leistungsfaktor (für FU-Modus)	0327,00	%	0x0E
I max eff	Motor-Maximalstrom	01000,0	Arms	0x4D
I nom eff	Motor-Dauerstrom	01000,0	Arms	0x4E
M-Pole	Motor-Polzahl (2 x Polpaare)	296	Num	0x4F
Kt	Motor Kt Konstante	050,000	Nm/A	0x87 _L
Ke	Motor Ke Konstante (Gegen EMK)	0500,00	V/krpm	0х87 _н
Bremse	- Anzugsverzögerungszeit	01000	ms	0xF1
verzug	der elektromechanischen Motorbremse			
	- Auslaufverzögerung			
	wenn keine Bremse angeschlossen ist			
Freier	Freier Auslauf (ON) oder Not-Stop Bremsung (OFF)	On / Off		0x5A _{Bit 3}
Auslauf	(beim Abschalten der Freigabe RUN (FRG))			
M-Temp	Motor-Übertemperatur-Abschaltpunkt (Error Code 6)	032767	Num	0xA3
	(Bei 93 % erfolgt eine Warnmeldung 6 mit Strom			
	Derating Ird-TM Aktivierung)			

¹ Parameter – Motor: Typ

Kurzz.:	Funktion:	ID-Adresse:
Тур		0x5A _{Bit 1312}
EC Servo	Synchron-Servo-Motor mit Gebersystem (Sensor)	0 dec
ACI V/f	Asynchron-Motor Frequenzumformer ohne Sensor	1 dec
	(U/F Kennlinie ohne Schlupfkompensation)	
ACI Servo	Asynchron-Motor AC-Servo-Vektor Regelung mit Drehzahl-Gebersystem	2 dec
	(z.B. Lagergeber A, B Kanal)	
DC	Gleichstrom-Motor ohne oder mit DC-Tacho-Geber	3 dec

Parameter – Feedback-Geber

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Typ ²	Auswahl Feedback			0xA4 _{Bit 40}
	(Rot_Enc_TTL, Resolver,)			
FB-Pole	Geber-Polzahl	212	Num	0xA7
FB-Offset	Phasenwinkel-Korrektur	±360	Grad	0x44
FB-Inkr. (Mot)	Auflösung-Geber	10248192	Inc/Rev	0xA6
Voltage	DC-Tachospannung		mV/rpm	
Inc-Out	Auflösung- 2.Geber		Inc/Rev	0xCF _L
Faktor	Multiplikator SIN/COS Inc.	416	Num	0x7E

² Parameter – Feedback-Geber: Typ

Kurzz.: Typ	Funktion:	ID-Adresse: 0xA4 _{Bit 40}
Rot_Enc_TTL	Inkrementalgeber TTL 5 V mit Rotorlagespuren	0 dec
Resolver	Resolver	1 dec
Abs_Enc_SC	Inkrementalgeber Sin/Cos 1Vss mit Kommutierungsspur	2 dec
Rot_Tacho	Rotorlagegeber mit bürstenlosem Tacho	3 dec
Rot	Rotorlagegeber (ohne Tacho)	4 dec
DC_Tacho	Gleichstrom-Tachogenerator	5 dec
DC_Arm	Ankerspannung (intern)	6 dec
BL_Arm	EC-AC-Motor ohne Tacho	7 dec
Enc_TTL	Inkrementalgeber TTL 5 V (ohne Rotorlage)	8 dec
Enc_SC	Inkrementalgeber Sin/Cos 1Vss ohne Kommutierungsspur	9 dec
Abs_SC	Inkrementalgeber Sin/Cos 1Vss pro Motor-Polpaar	10 dec
DC_Arm_Vir	Sensorlos (DC-Motor ohne Tacho, ohne Ankerspannungsmessung	11 dec
SLS	Sensorlos (Nur für ACI V/f Betrieb)	12 dec
SLS_SMO	nicht aktiviert	13 dec
SLS_Usens	nicht aktiviert	14 dec
Ana_In1_calc	nicht aktiviert	15 dec
Ana_In2_calc	nicht aktiviert	16 dec
Panasonic	nicht aktiviert	17 dec
DC_Bus	nicht aktiviert	18 dec

Parameter – 2. Feedback-Geber

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Typ ³	Auswahl 2. Zähleingang			0xA4 _{Bit 75}
Inc-ext	Auflösung Inkremente 2. Geber		Inc/Rev	0xCF _L
Faktor-ext	Geberfaktor 2. Geber	416	Num	0x7E
Inc-Out	Inkremente Ausgang Auflösung		Inc/Rev	0xCF _H
Faktor	Multiplikations-Faktor der Grund-Impulszahl bei			0xA4 _{Bit 1412}
	SinCos (SC)			

³ Parameter – 2. Feedback-Geber: Typ

Kurzz.:	Funktion:	ID-Adresse:
Тур		0xA4 _{Bit 75}
	Eingang abgeschaltet	0 dec
Enc - Position	Eingang als Positionseingang	1 dec
Enc - Info	Eingang nur Anzeige	2 dec
Enc - Hand.	Eingang als Handradeingabe	3 dec
SSI	SSI-Geber Eingang	

Parameter - Servo

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Туре	Geräte-Bezeichnung (protected)	0255	Num	0x67 _{Bit70}
S-Nr.	Seriennummer Gerät (protected)	32 Bit - 1	Num	0x62
Achse	Achsen-Bezeichnung (frei beschreibbar)	4 Zeichen	ASCII	0xF8
Netz Typ	Auswahl der Lestungsspannung	AC / DC		0x5A _{Bit 19}
Netzspannung	Größe der Netz-Spannung	01000	V	0x64
DC-BUS max	Maximale Spannungsgrenze vom DC Bus (Software)	0200	%	0хА5н
DC-BUS min	Minimale Spannungsgrenze vom DC Bus (Software)	0200	%	0xA5∟
Ballast	Auswahl Ballastwiderstand	INT / EXT		0x5A _{Bit 1}
Ballast-P	Leistungswert Ballastwiderstand	2510000	W	0x65 _L
Ballast-R	Widerstandswert Ballastwiderstand	5100	Ohm	0х65н
BTB Power	BTB-Meldung mit oder ohne Zwischenkreis Unterspannungsüberwachung.	mit / ohne		0x5A _{Bit 6}
PWM freq ⁴	PWM Taktfrequenz	Auswahlfeld		0x5A _{Bit 2220}
Mode ⁵ (Command)	Art der Sollwartevorgabe für die Drehzahl- oder Momenten Befehle	Auswahlfeld		0x36 _{Bit 1312}
Cutoff (dig.)	Nullzone bei digitaler Sollwertvorgabe	032767	Num	0x1E

⁴ Parameter – Servo: PWM freq

Kurzz.:	Funktion:	ID-Adresse:
PWM freq		0x4A _{Bit 2220}
8kHz		0 dec
24kHz	Not active!	1 dec
20kHz	Not active!	2 dec
16kHz		3 dec
12kHz		4 dec
8kHz I16	intern 16 kHz	5 dec
4kHz I8	intern 8 kHz	6 dec
2kHz I4	intern 4 kHz	7 dec

⁵ Parameter – Servo Command: Mode

Kurzz.:	Funktion:	ID-Adresse:
Mode		0x36 _{Bit 1312}
Digital Speed	Digitaler Drehzahl-Sollwert von RS232 oder CAN-BUS	0 dec
Analog Speed	Drehzahl-Sollwert Analog	1 dec
Analog Torque	Drehmoment – Sollwert Analog	2 dec
Digi + Ana Speed	Digitaler plus analoger Sollwert	3 dec

Parameter – Übersicht Analog (Ain1 + Ain2)

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
				Ain1 -
				Ain2 -
Format ⁶	Auswahl der Funktion der jeweiligen	Auswahlfeld		0x36 _{Bit 10}
	Analogeingänge			0x36 _{Bit 32}
Offset	Offsetkompensation der jeweiligen	±32767	Num	0x2F _L
	Analogeingänge			0xD7 _L
Nullzone	Nullzone der jeweiligen analogen	032767	Num	0x50
	Sollwertvorgaben			0x53
Scale	Skalierungsfaktor der jeweiligen	±7,999	Num	0x2F _H
	Analogeingänge			0xD7 _H
Filter	Filter der jeweiligen Analogeingänge	0127,5	Num	0x60
Mode ⁷	Eingangspegel Auswahl der jeweiligen	Auswahlfeld		0x36 _{Bit 54}
(Analog)	Analogeingänge			0x36 _{Bit 98}

⁶ Parameter – Analog Command Format (Ain1 + Ain2)

Format: A	Format: Ain1	
Off	Deaktiviert	$0x36_{Bit\ 10} = 0$
+Cmd	Sollwert Befehl normal	$0x36_{Bit \ 10} = 1$
-Cmd	Sollwert Befehl invertiert	$0x36_{Bit\ 10} = 2$
sq(Cmd)	Quadratischer Sollwert Befehl	$0x36_{Bit\ 10} = 3$
N limit	Drehzahlbegrenzung 0100 % über Ain1	0x36 _{Bit 15}
	(bei digitaler Sollwertvorgabe (Position, Drehzahl)). Dies entspricht 100 %	
	der max. physikalischen Drehzahl definiert in N-100 % (0xC8).	

Format: A	Format: Ain2	
Off	Deaktiviert	$0x36_{Bit 32} = 0$
+Cmd	Sollwert Befehl normal (Ain2 wird zu Ain1 addiert)	$0x36_{Bit 32} = 1$
-Cmd	Sollwert Befehl invertiert (Ain2 wird zu Ain1 addiert)	$0x36_{Bit 32} = 2$
*Cmd	Sollwert Befehl normal (Ain2 wird mit Ain1 multipliziert)	$0x36_{Bit 32} = 3$
llimit	Strombegrenzung 0100 % über Ain2	0x36 _{Bit 14}
	(bei allen Sollwertvorgaben Digital, Analog).	
	Dies entspricht 100 % vom Geräte Spitzenstrom I max pk (0xC4).	

⁷ Parameter – Analog Mode (Ain1 + Ain2)

Kurzz.:	Funktion:	ID-Adresse:
		0x36 _{Bit 54}
-10+10V	Sollwert plus-minus max. 10 V	0 dec
0+10V	Sollwert plus max. 10 V	1 dec
420mA	Sollwert 4 bis 20 mA an 500 Ohm	2 dec
+1+9V	Sollwert 1 bis max. 9 V	3 dec

Parameter – Stromregler

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x1C
Ti	Nachstellzeit (Integrale Zeitkonstante)	37510000	ms	0x1D
TiM	Maximalwert vom Integral-Speicher Ti	0300	%	0x2B
xKP2	Proportionalverstärkung im Fall Iststrom größer Stromgrenze	0, 100500	%	0xC9
Kf	Strom Vorsteuerung	0167	Num	0xCB
Ramp	Rampeneistellung Sollstrom	12532000	μs	0x25

Parameter – Strom Begrenzungen

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
I max pk	Geräte Spitzenstrom [A]	0100	%	0xC4
I con eff	Geräte Dauerstrom [Arms]	0100	%	0xC5
T-peak ²	Erlaubte Überstromzeit oberhalb Dauerstromgrenze (Abbau 5 mal länger)	140	S	0xF0
I lim dig ³	Stromreduzierung wenn Logik-Eingang I limit (dig.) aktiviert ist	0100	%	0x46
I-red-N	Stromreduzierung über die Ist-Drehzahl	0100	%	0x3C
I-red-TD	Start der Stromreduzierung über die Endstufentemperatur	032767	Num	0x58
I-red-TE	Ende der Stromreduzierung über die Endstufentemperatur	032767	Num	0x4C
l-red-TM	Start Stromreduzierung über die Motor-Temperatur	032767	Num	0xA2
I lim inuse	Aktuelle Stromgrenze	032767	Num	0x48
² Nur aktiv wenn Stromreduzierung anhand der Endstufentemperatur nicht Aktiviert ist (0x40 _{Bit 23} (Ird-TI) = 0)				

Parameter – Spannungen Endsstufe

³ Referenz ist maximaler Geräte Spitzenstrom (I max pk (0xC4) = 100 %)

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Vemf	Aktueller Vemf-Spannungsanteil	±4096	Num	0x29 _H
	(Vorsteuerung Gegen EMK)			
Vq	Aktueller Vq-Spannungsanteil	±4096	Num	0x29
Vd	Aktueller Vd-Spannungsanteil	±4096	Num	0x2A
Vout	Aktuelle Ausgangsspannung	±4096	Num	0x8A
V-red	Spannungs-Referenzwert in % von Vout	0100	%	0x8B
	(V-red ≠ 0, 100 % → Aktivierung Feldschwächeregelung)			
	Empfehlung: 6080 %			
V-kp	Proportional-Verstärkung der Feldschwächeregelung	065535	Num	0x8C
V-Ti	Nachstellzeit der Feldschwächeregelung	065535	Num	0x8D
Vdc-Bus	Zwischenkreis-Spannung	032767	Num	OxEB

Parameter – Drehzahl -Sollwertvorgabe, -Istwert

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Ain 1 skaliert	Analoge Sollwert-Vorgabe - Eingang Ain1	±32767	Num	0хD5 _н
Ain 2 skaliert	Analoge Sollwert-Vorgabe - Eingang Ain2	±32767	Num	0хD6 _н
N set (dig.)	Digitale Sollwert-Vorgabe der Drehzahl	±32767	Num	0x31
M set (dig.)	Digitale Sollwert-Vorgabe vom Iq-Strom	±32767	Num	0x90
N cmd (int)	Verwendeter Drehzahl-Sollwert (intern)	±32767	Num	0x5D
N cmd (ramp)	Drehzahl-Sollwert nach Rampe	±32767	Num	0x32
N actual	Drehzahl-Istwertsignal für die Regelung	±32767	Num	0x30
N act (filt)	Drehzahl-Istwertsignal für die Anzeige	±32767	Num	0xA8
N error	Regelfehler Drehzahl-Istwert	±32767	Num	0x33

Parameter – Begrenzung, Rampen für Drehzahl- und Torquevorgabe

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
N R-Acc	Drehzahl – Beschleunigungsrampe	030000	ms	0x35 _L
N R-Dec	Drehzahl – Bremsrampe	030000	ms	0xED _L
M R-Acc	Moment – Beschleunigungsrampe	04000	ms	0x35 _H
M R-Dec	Moment – Abbaurampe	04000	ms	0xED _H
M R-Rcp	Moment – Rekuperationsrampe (0xCD _{Bit 4})	04000	ms	0хС7 _н
R-Lim	Notstop, Endschalter-Rampe	01000	ms	0xC7 _L
N-100%	Physikalischer Referenzwert für die interne	10050000	rpm	0xC8
	Auflösung der Drehzahl auf 16 Bit (±32767)			
N-Lim	Drehzahlbegrenzung für positive und negative	0100	%	0x34
	Drehrichtung			
N-Lim+	Begrenzung für positive Drehrichtung (wenn	0100	%	0x3F
	Logik-Eingang N clip(neg&pos) aktiviert ist)			
N-Lim-	Begrenzung für negative Drehrichtung (wenn	0100	%	0x3E
	Logik-Eingang N clip(neg&pos) aktiviert ist)			
Filter	Filter Drehzahl-Istwert	010	Num	0x5E

Parameter – Drehzahlregler

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x2C
Ti	Nachstellzeit (Integrale Zeitkonstante)	010000	ms	0x2D
Td	Vorhaltezeit (Differenzier-Anteil)	0100	ms	0x2E
TiM	Maximalwert vom Integral-Speicher Ti	0100	%	0x3B

Parameter – Positionsregler Referenzfahrt

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Speed 1	Drehzahl zum Endschalter	032000	Num	0x76 _L
	Der Endschalter wird abhängig von der Drehzahl			
	überfahren			
Speed 2	Umkehr- Drehzahl zurück zum Nullimpuls	02000	Num	0x77 _L
	(Schleifengeschwindigkeit)			
Reso Edge	Erwartete Schaltflanke	065536	Num	0x75
Ref-Ramp	Auswahl der Rampe bei der Referenzfahrt	DEC / LIM		0x5A _{Bit 5}
	zwischen N R-Acc und R-Lim			
Mit der Refer	enzfahrt wird der Nullpunkt des inkrementellen Maß	systems best	immt	

Parameter – Positionsregler (Pos → Speed)

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Кр	Proportionalverstärkung	0200	Num	0x6A
	Bestimmt die Steilheit der Verzögerungsrampe			
Ti	Integrations- Nachstellzeit (abhängig von Kp)	010000	ms	0x6B
Td	Vorhaltezeit (Differenzieller-Anteil)	01000	ms	0x6C
TiM	Maximalwert vom Integral-Speicher Ti	0100	%	0x71
Der verstärkte Positionsfehler bildet den Drehzahlsollwert				

Die Positionsregelung ist deaktiviert wenn Kp = 0 ist

Die dynamische Regelverstärkungen Ti ist nur im Zielbereich wirksam

Parameter – Positions Parameter

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
Tol-wind.	Positions- Toleranzfenster	02000	Num	0x79
Off.Ref.	Mechanische Nullpunktverschiebung		Num	0x72
ND-Scale	NDrive Positions-Anzeige-Faktor	32 Bit - 1	Num	0x7C
ND-Offset	NDrive Positions-Anzeige-Offset	32 Bit - 1	Num	0x7D
Pos dest	Vorgabe Sollposition	±32 Bit - 1	Num	0x6E
Pos cmd	Verwendete Sollpostion (intern)	±32 Bit - 1	Num	0x91
Pos aktuell	Positions-Istwert	±32 Bit - 1	Num	0x6D
Pos error	Regelfehler Positions-Istwert	±32 Bit - 1	Num	0x70
Inc-ext	Auflösung Inkremente 2. Geber		Inc/Rev	0xCF _L
Faktor-ext	Geberfaktor 2. Geber	416	Num	0x7E
Inc-Out	Inkremente Ausgang Auflösung		Inc/Rev	0xCF _H
32 Bit - $1 \rightarrow 2^{32}$ - $1 = 4.294.967.295$ ±32 Bit - $1 \rightarrow \pm 2^{32-1}$ - $1 = \pm 2.147.483.647$				
±32 Bit - 1 → ±2325	- 1 = ±2.147.483.047			

Parameter – Frequenzumrichter Einstellung Parameter der FU-Kennlinie

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
FU Start				
T dc	Vormagnetisierung-Zeit	102000	ms	0x07 _L
	Verzögerung zwischen Einschalten und Starten der			
	Frequenz			
U dc	Vormagnetisierung-Gleichspannungswert	020	%	0x08 _L
U min	Minimalspannung (Boost) bei Stillstand des Motors	0100	%	0x0A _L
	→ U/F Kennlinie wird angehoben			
	Empfohlen: U min = U dc			
F min	Minimalfrequenz bei Stillstand des Motors	0100,0	Hz	0x0B _L
U eck	Maximale Ausgangsspannung bei der Eckfrequenz	0100,0	%	0x0C _L
F eck	Eckfrequenz für maximale Ausgangsspannung	11000,0	Hz	0x0D _L
F-sh ⁸	Form der Kennlinie (Linear, Halb-Quadratisch,	03	Num	0x0F _{Bit 21}
	Quadratisch)			

⁸ Parameter – F-sh (FU Start)

Kurzz.:	Funktion:	ID-Adresse:
		0x0F _{Bit 21}
linear	(zur Zeit nur linear verwendbar)	0 dec
quad/2		1 dec
quad		2 dec
opt		3 dec

Parameter – Logik Bit

Kurzz.:	Funktion:	ID-Adresse:
		0xD8
LMT1	Digitaler Eingang Limit 1	Bit 0
LMT2	Digitaler Eingang Limit 2	Bit 1
IN2	Digitaler Eingang Din 2	Bit 2
IN1	Digitaler Eingang Din 1	Bit 3
RUN (FRG)	Digitaler Eingang der Software Drehfeld Freigabe RUN	Bit 4
RFE	Digitaler Eingang der Hardware Drehfeld Freigabe RFE	Bit 5
	rsvd	Bit 6
	rsvd	Bit 7
OUT1	Digitaler Ausgang Dout 1	Bit 8
OUT2	Digitaler Ausgang Dout 2	Bit 9
RDY (BTB)	Hardware Relaisausgang BTB-Rdy	Bit 10
GO	Status der internen Freigabe GO	Bit 11
OUT3	Digitaler Ausgang Dout 3	Bit 12
OUT4	Digitaler Ausgang Dout 4	Bit 13
	rsvd	Bit 14
BRK1	Status der erregten Bremse	Bit 15

Parameter – Logik Ausgang Vergleichs-Variable

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:	
0	Logiksignal Null	1/0	Logik		
1	Logiksignal Eins	1/0	Logik		
Var1	Ni	ariablenfelder ±32767	Num	0xD1	
Var2				0xD2	
Var3	Numerischer Wert der eingegebenen Variablenfelder		Nulli	0xD3	
Var4					
Ain1	Analogwert Eingang Ain1	±32767	Num		
Ain2	Analogwert Eingang Ain2	±32767	Num		

Parameter - CAN Bus Schnittstelle

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
NBT	CAN Übertragunsrate (siehe Liste)	00xFFFE	hex	0x73 _{Bit 110}
Rx ID	CAN ID – Empfangs-Adresse	00x7EE	hex	0x68
Tx ID	CAN ID – Sende-Adresse	00x7EE	hex	0x69
T-Out	CAN Timeout Zeit	060000	ms	0xD0
Achse	Achsen-Bezeichnung (frei beschreibbar)	4 Zeichen	ASCII	0xF8

Parameter – CAN Bus NBT Möglichkeiten

Übertragungsrate NBT:	Einstellwert in NBT (0x73):	Leitungslänge max.:
1000 kBaud	0x4002	20 m
625 kBaud	0x4014	70 m
500 kBaud	0x4025 (Default)	70 m
250 kBaud	0x405C	100 m
125 kBaud	0x4325	100 m
100 kBaud	0x4425	100 m

Parameter – Fehler Maske

Fehler in NDrive:	Zusatz:	ID-Adresse:	Servo Anzeige:
NOREPLY- No RS232 COM reply	RS232 Schnittstelle gestört	-	J
0: Eprom Read Fehler	Lesen aus dem Eprom Fehlerhaft	Bit 0	0
1: HW Fehler erkannt	Kritischer Hardware-Fehler erkannt	Bit 1	1
2: RFE Eingang offen	Sicherheitskreis offen (mit RUN Eingang aktiv)	Bit 2	2
3: CAN TimeOut Fehler	CAN TimeOut Zeit überschritten	Bit 3	3
4: Geber Signal Fehler	Schlechtes oder Fehlendes Gebersignal	Bit 4	4
5: Netzspannung Min. Limit	Leistungsspannung fehlt (Digital) oder unterhalb DC-Bus min Grenze (Analog)	Bit 5	5
6: Motor-Temp. Max. Limit	Motortemperatur zu hoch	Bit 6	6
7: IGBT-Temp. Max. Limit	Endstufentemperatur zu hoch	Bit 7	7
8: Netzspannung Max. Limit	Leistungsspannung > 1.8 x UN (Digital) oder oberhalb DC-Bus max Grenze (Analog)	Bit 8	8
9: Kritischer AC Strom	Überstrom oder stark oszilierenden Strom erkannt	Bit 9	9
A: Race Away erkannt	Durchdrehen ohne Sollwert	Bit 10	Α
B: ECode TimeOut Error	Schlechtes oder Fehlendes ECode protocol	Bit 11	В
C: Watchdog Reset	CPU Reset auf Grund des Watchdogs	Bit 12	С
D: I Offset Problem	AC Strom Offset Ermittlung	Bit 13	D
E: Interne HW Spannung	Fehler einer internen Spannung erkannt	Bit 14	Е
F: Ballastwiderstand überlastet	Nur bei digitalen Drehstrom-Motorregler	Bit 15	F

Parameter – Warnung Maske

Warnung	Zusatz:	ID-Adresse:	Servo
in NDrive:		0x8F _н	Anzeige:
0: Parameter Konflikt erkannt	Parameter von einem anderen Gerätetyp	Bit 16	0
1: Spezieller CPU Fehler	RUN Eingang prellt (oder EMI Probleme)	Bit 17	1
2: RFE Eingang offen	Sicherheitskreis offen	Bit 18	2
	(ohne RUN Eingang aktiv)		
3: Hilfsspannung Min. Limit ¹	Versorgungsspannung zu gering	Bit 19	3
4: Geber Signal Problem ²	Schlechtes oder Fehlendes Gebersignal	Bit 20	4
	(Fehler-Abschaltung wurde deaktiviert)		
5: Warn. 5		Bit 21	5
6: Motor-Temperatur (>87%)	T-motor > (I-red-TM oder 93 % von M-	Bit 22	6
	Temp)		
7: Igbt-Temperatur (>87%)	T-igbt > 87 % vom Limit	Bit 23	7
8: Vout Ausgabe-Grenze erreicht	Grenze der vorhandenen	Bit 24	8
	Spannungsausgabe erreicht		
9: Warn. 9		Bit 25	9
A: Drehzahlauflösung überschritten	Auflösungsbereich der Drehzahlmessung	Bit 26	Α
	überschritten		
B: Check ECode ID: 0x94	Fehler mit einer ECode Kodierung im ID	Bit 27	В
	Register 0x94 erkannt		
C: Tripzone Glitch erkannt	Tripzone ungewollt ausgelöst	Bit 28	С
D: ADC Sequencer Problem	Problem der ADC Sequencer Auswertung	Bit 29	D
E: ADC Messungs-Problem	Problem von internen ADC Spannungen	Bit 30	E
F: Ballastwiderstand (>87%) ¹	Ballastschaltung > 87 % überlastet	Bit 31	F
1 Nur hastimmta Matarraglar			

¹ Nur bestimmte Motorregler

² Fehlerüberwachung wurde deaktiviert. Warnung soll auf Probleme hinweisen.

Parameter – Statusanzeige

Kurzz.:	: Funktion:	
		0x40
Ena	Antrieb freigegeben	Bit 0
	(Kombination Hardware RFE und Software RUN)	
NcR0	Drehzahl auf null begrenzt (letzter Sollwert noch aktiv)	Bit 1
Lim+	Endschalter Plus aktiv	Bit 2
Lim-	Endschalter Minus aktiv	Bit 3
ОК	Antrieb in Ordnung	Bit 4
	(kein unkontrollierter Reset)	
Icns	Stromgrenze auf Dauerstrom reduziert	Bit 5
T-Nlim	Drehzahlbegrenzter Drehmoment-Modus	Bit 6
P-N	Positionsregelung	Bit 7
N-I	Drehzahlregelung	Bit 8
<n0< td=""><td>Drehzahl kleiner als 0.1 % (Stillstand)</td><td>Bit 9</td></n0<>	Drehzahl kleiner als 0.1 % (Stillstand)	Bit 9
Rsw	Referenz-Eingang angewählt	Bit 10
Cal0	Referenzfahrt läuft	Bit 11
Cal	Referenzposition erkannt	Bit 12
Tol	Position im Toleranzfenster	Bit 13
Rdy	Betriebsbereit (BTB/RDY Kontakt geschlossen)	Bit 14
Brk0	Nicht erregte Bremse bei Motor aktiv	Bit 15
SignMag	Sollwert invertiert	Bit 16
Nclip	Drehzahlbegrenzung aktiviert (N-Lim < 90 %)	Bit 17
Nclip+	Drehzahlbegrenzung positiv über Schalter	Bit 18
Nclip-	Drehzahlbegrenzung negativ über Schalter	Bit 19
Ird-Dig	Strombegrenzung über Schalter	Bit 20
luse-rchd	Grenze der Stromreduzierung erreicht	Bit 21
Ird-N	Stromreduzierung über Drehzahl	Bit 22
Ird-TI	Stromreduzierung über Endstufentemperatur aktiviert	Bit 23
Ird-TIR	Stromreduziert auf Dauerstrom über Endstufentemperatur ist aktiv	Bit 24
Ird-10Hz	Stromreduzierung bei einer Drehfeld-Frequenz kleiner 10 Hz	Bit 25
Ird-TM	Stromreduzierung über Motortemperatur	Bit 26
Ird-Ana	Stromreduzierung über Analogeingang (wenn ≤ 90 %)	Bit 27
lwcns	Stromspitzenwert-Warnung	Bit 28
RFEpulse	Gepulster RFE-Eingang Überwachung aktiv	Bit 29
Fiwe Acv	Feldschwächung aktiv	Bit 30
HndWhl	Handrad-Eingang angewählt	Bit 31

Parameter – Einstellungen Schalter für Spezialfunktionen (Mode Bits)

Kurzz.:	Funktion:	ID-Adresse:
		0x51 _{Bit 90}
Reserve		Bit 0
SPEED = 0	Antrieb Stop Drehzahl-Sollwert = 0	Bit 1
ENABLE OFF	Antrieb gesperrt Freigabe intern abgeschaltet	Bit 2
CANCEL CAL-CYCLE	Referenzfahrt gestoppt	Bit 3
d(status) → CAN		Bit 4
I-clip on	Stromgrenze in % vom Typenstrom aktiv	Bit 5
N-clip on	Drehzahlbegrenzung (positiv und negativ)	Bit 6
Mix ana on	Drehzahl-Sollwert digital plus analog	Bit 7
Allow sync		Bit 8
HndWhl	2. Feedback als Handrad	Bit 9

Parameter – Parameter auf der Seite Monitor

Kurzz.:	Funktion:	Bereich:	Einheit:	ID-Adresse:
N cmd (ramp)	Drehzahl-Sollwert nach Rampe und Limit	032767	Num	0x32
N actual	Drehzahl Istwert	032767	Num	0x30
Iq cmd	Wirkstrom (Iq) Sollwert (intern)	±2000	Num	0x26
I act (filt)	Aktuelle Summenstrom nach Anzeigefilter	±2000	Num	0x5F
Id actual	Aktueller Blindstrom (Id)	±2000	Num	0x28
Iq actual	Aktueller Wirkstrom (Iq)	±2000	Num	0x27
lxt	Auslastung Ixt	04000	Num	0x45∟
Leistung	Motorleistung (nicht verwenden!)	04000	Num	0xF6
Vdc-Bus (dir)	Zwischenkreis- Spannung	032767	Num	0xEB
Ballast-Energie	Ballast-Leistung	04000	Num	0х45н
T-motor	Aktuelle Motortemperatur	032767	Num	0x49
T-igbt	Aktuelle Endstufentemperatur	032767	Num	0x4A
T-air	Aktuelle Lufttemperatur im Servo	032767	Num	0x4B
I lim inuse	Aktuelle Stromgrenze	02000	Num	0x48
Vout	Aktuelle Ausgangsspannung	04000	Num	0x8A
M out	Aktueller Wirkstrom (Iq) normiert	±32767	Num	0xA0

Parameter – Kern-Options (Do not modify!)

Kurzz.:		Funktion:	ID-Adresse: 0x5A
Vdc comp		Analoge Zwischenkreismesswert beeinflusst Vout	Bit 0
Rregen-ext		Ballastwiderstand extern	Bit 1
TJ spec		Aktivierung Geberüberwachung	Bit 2
Coast		Freier Auslauf (keine Notstopprampe verwenden)	Bit 3
lact inv		Stromistwert-Polarität invertiert	Bit 4
1000 1111		(Werkseinstellung aktiv bei DS450, BAMO-D3)	
Ref soft		Umkehr-Rampe bei Referenzfahrt von Limit auf "Dec" gesetzt.	Bit 5
Rdy - Run		BTB-Signal auch bei Unterspannung-Fehlermeldung	Bit 6
Vdc ana		Analoge Zwischenkreismessung	Bit 7
lact 1 ena		Strommessung von I1 aktiviert	Bit 8
Hall inv		Reihenfolge Hall-Signale invertiert	Bit 9
H.2 inv		Hallsignal 2 invertiert	Bit 10
OL comp		Over Loop current limit or slip compensation Enable	Bit 11
MotorType:	.0	Auswahl Motor	Bit 1312
,,	.1		
ana Oup		Messbereich der Vdc-Bus Spannung am Prozessorpin	Bit 14
		(1 = 05V) or (0 = 2.55V)	
low baud		Schnittstelle RS232 verwendet 9600 Baud	Bit 15
s-ramp		Auswahl S-Rampe aktiv	Bit 16
4-ramp		Auswahl 4 Rampen aktiv	Bit 17
mot brk		Auswahl mit Bremse aktiv	Bit 18
ad dc		AC or DC power supply	Bit 19
PWM freq:	.0	Einstellung PWM Taktfrequenz	Bit 2220
	.1		
	.2		
ntc		IGBT NTC Temperature Sensor	Bit 23
star-del		Motorphasen Dreieck	Bit 24
dc 1Q		DC 1Quadrant, direkte Spannungsstellung PWM	Bit 25
dc field		DC Feldregler	Bit 26
dead x2		Totband *2	Bit 27
block		Blockstrom bei ROT Feedback	Bit 28
dc 1Qmv		DC 1Quadrant, minimale Schaltverluste	Bit 29
dc 1Q3p		DC 1Quadrant, keine High-Side , -UB Schalter parallel	Bit 30
Frd<10Hz		Umschaltung auf 4 kHz bei n < 10 Hz (Kein Derating)	Bit 31