MANUAL

Digitaler Batterie - Motorregler BAMOBIL-D3.3

für EC-Servomotor

Hans-Paul-Kaysser-Straße 1 71397 Leutenbach-Nellmersbach

Tel: 07195 / 92 83 - 0 contact@unitek.eu www.unitek.eu

Ausgabe / Version

2023/V1

Inhaltsverzeichnis

1	Basi	s - Informationen	. 3
	1.1	Weitere Produkte	. 3
	1.2	Projektierungsanleitung (MANUAL)	. 3
	1.3	Verwendete Bezeichnungen und Symbole	. 3
	1.4	Allgemeine Produktinformationen	. 4
	1.5	Anwendung / Einsatz / Aufbau / Eigenschaften	. 5
	1.6	Sicherheitsinformationen	. 7
	1.7	Inbetriebnahme	. 9
	1.8	Details der Sicherheitshinweise	10
	1.9	Bestimmungsgemäße Verwendung	10
	1.10	Vorschriften und Richtlinien	12
	1.11	Risiken	13
	1.12	Technische Daten	14
2	Med	hanische Installation	16
	2.1	Wichtige Hinweise	16
	2.2	Maßbild BAMOBIL D3	17
	2.3	Maßbild mit Zusatzkühler (optional)	18
	2.4	Montage / Durchsteck-Montage	19
3	Elek	trische Installationen	20
	3.1	Wichtige Hinweise	20
	3.2	Blockschaltbilder	22
	3.3	Anschlussplan	23
	3.4	EMV	24
	3.5	Steckerübersicht	25
	3.6	Batterieanschluss	26
	3.7	Motor Leistungsanschluss	29
	3.8	Digitaler Eingang	29
	3.9	Sicherheits-Eingang RFE (Drehfeld – Freigabe)	30
	3.10	Digitaler Ausgang (Open-Emitter)	31
	3.11	Analoger Eingang +/- 10 V	32
	3.12	Analoger Ausgang +/- 10 V	33
	3.13	Serielle Schnittstelle RS 232	34
	3.14	CAN-BUS	35
	3.15	Resolveranschluss	36
	3.16	Encoder TTL Anschluss	36
	3.17	SIN COS 1Vss Anschluss	38
	3.18	Rotorlagegeber Anschluss mit bl-Tacho	40

3.19	X8 TTL-Encoder Ausgang oder Eingang (2)	. 41
3.20	X8 als TTL Encoder Ausgang	. 42
3.21	Leuchtanzeigen-Status	. 43
3.22	Leuchtanzeigen Fehler	. 44
3.23	Leuchtanzeigen Warnungen	. 45
	Messwerte	
3.25	Endstufen-Temperatur	. 47

1.1 Weitere Produkte

Analog und Digital	Serie BAMOBIL
Analog und Digital	Serie BAMOCAR

1.2 Projektierungsanleitung (MANUAL)

MANUAL BAMOBIL – D3 Hardware
 MANUAL NDrive Software

Zur Projektierung, Installation und Inbetriebnahme alle MANUALs benutzen!

Online als Download unter www.unitek.eu.

Das Hardware-MANUAL enthält Warn- und Sicherheitshinweise, Erklärungen zu Normen, mechanische- und elektrische Installationshinweise.

Das MANUAL muss für alle mit dem Gerät beschäftigten Personen zugänglich gemacht werden.

1.3 Verwendete Bezeichnungen und Symbole

Gerät	BAMOBIL		
Anwender	Fahrzeug-, Maschinen-, Anlagen-Hersteller oder Betreiber im industriellen Bereich (B2B, zweite Umgebung)		
Hersteller:	UniTek Industrie Elektronik GmbH		
Händler:			
^			
4	Achtung Lebensgefahr! Hochspannung		

Version: 2023 / V1 Seite: 3 BAMOBIL-D3.3

1.4 Allgemeine Produktinformationen

Der Digitale-Drehstrom-Servoverstärker **BAMOBIL-D3-xxx** bildet zusammen mit dem Motor eine 4-Quadranten Antriebseinheit. Treiben und Bremsen mit Energierückspeisung in beiden Drehrichtungen. Je nach installiertem Parametersatz ist der Verstärker geeignet für EC-Synchron-Motoren, AC-Asynchron-Motoren oder Gleichstrom-Motoren.

Die Antriebskonzepte zeichnen sich durch unterschiedliche Vor- und Nachteile aus.

Der **EC-Antrieb** (Synchronmotor) hat den höchsten Wirkungsgrad und die höchste Leistung pro Gewicht und Volumen. Er ist wartungsfrei und hat eine hohe Regeldynamik. Nachteil ist der schwierig zu regelnde Feldschwächebereich und das hohe Bremsmoment bei Motorkurzschluss.

Der EC-Synchron-Motor (bürstenlose Gleichstrommotor) ist in seiner elektrischen Ausführung ein Synchronmotor mit Dauermagnet-Rotor und Drehstromstator.

Die physikalischen Eigenschaften entsprechen denen des Gleichstrommotors,

d.h. der Strom ist proportional zum Drehmoment und die Spannung ist proportional zur Drehzahl. Die Drehzahl wird bis zur Stromgrenze (max. Drehmoment) stabil geregelt. Bei Überlastung sinkt die Drehzahl bei konstantem Strom.

Rechteckige Drehzahl-Drehmoment-Kennlinie.

Strom, Drehzahl und Position (Lage) werden exakt gemessen. Die Drehfeldfrequenz ist keine Regelgröße, sie stellt sich selbsttätig ein.

Die Motorspannungen und Motorströme sind sinusförmig.

Der **AC-Antrieb** (Asynchronmotor) hat durch die einfache Feldschwächung den höchsten Drehzahlbereich und er erzeugt bei Motor-Kurzschluss kein Bremsmoment. Nachteil ist die Baugröße und der schlechtere Wirkungsgrad. Regelgröße ist die Drehfeldfrequenz unter Berücksichtigung der motorspezifischen Kenngrößen. (Feldorientierte Regelung) Die Motorspannungen und Motorströme sind sinusförmig.

Der Controller muss den Wirkstrom und den Magnetisierungsstrom liefern.

Bei beiden Drehstromsystemen erfolgt keine Motorbewegung, wenn das Drehfeld abgeschaltet wird oder ein Endstufenschaden besteht. Die Verlustwärme entsteht überwiegend im Motor-Stator.

Der **DC-Antrieb** (Gleichstrommotor) hat den besten Gleichlauf und einen hohen Regelbereich. Ein Notlauf kann durch direkte Aufschaltung der Batteriespannung erreicht werden. Nachteil sind die Kohlebürsten und die Wärmeentwicklung im Anker. Der Antrieb kann bei einem Endstufenschaden mit hoher Geschwindigkeit drehen.

Der Strom ist proportional zum Drehmoment und die Spannung ist proportional zur Drehzahl. Strom, Drehzahl und Position (Lage) werden exakt gemessen. Die Drehzahl wird bis zur Stromgrenze (max. Drehmoment) stabil geregelt. Bei Überlastung sinkt die Drehzahl bei konstantem Strom. Rechteckige Drehzahl-Drehmoment-Kennlinie.

Bei fremderregten Motoren ist Feldschwächung möglich

BAMOBIL D3 kann als Positionsregler, Drehmoment-, oder Drehzahl-Verstärker eingesetzt werden. Der Drehzahlistwert wird aus der Gebereinheit (Resolver- oder Andere) generiert oder intern (sensorlos) erzeugt. Großer Regelbereich und hohe Regeldynamik erfordern ein Gebersystem.

Version: 2023 / V1 Seite: 4 BAMOBIL-D3.3

1.5 Anwendung / Einsatz / Aufbau / Eigenschaften

Anwendung in:

Fahrzeugen, Maschinen und Anlagen aller Art bis zu einer Antriebsleistung von 7,5 KW im rauen Einsatz besonders als 4Q-Servoantriebe

- bei hochdynamischen Beschleunigungs- oder Bremsvorgängen
- bei großen Regelbereichen
- bei hohem Wirkungsgrad
- bei kleinen Motorabmessungen
- bei gleichmäßigem, ruhigem Laus

für Drehzahlregelung, Drehmomentregelung oder kombinierte Drehzahl-Drehmomentregelung mit oder ohne überlagerter Lageregelung.

Einsatz in:

Batteriebetriebene Fahrzeuge wie Elektrofahrzeuge, Elektroboote, Stapler, Transportsysteme sowie in batteriebetriebene Maschinen und Anlagen wie Montageautomaten, Metallbearbeitungsmaschinen, X-Y Tische, Lebensmittelmaschinen, Roboter und Handlingsysteme, Regalförderfahrzeuge, Steinbearbeitungsmaschinen und in vielen anderen batteriegespeisten Anwendungen.

Aufbau:

- Kompaktgerät nach den VDE-, DIN- und EG-Richtlinien / IP40
- Kein Berührungsschutz der Anschlüsse bei <60 V
- Gehäuse Spritzwassergeschützt IP53 (Option)
- Einheitliche digitale Regelelektronik
- Leistungselektronik für 50 A, 80 A, 100 A, 120 A, 150 A, 250 A, 350 A, 450 A
- Unabhängiges 24 V-Choppernetzteil für die Hilfsspannungen
- Leistungs-Eingangsbereich nom 12 bis 48 V=
- Zusatzkühler für Luft- und Wasserkühlung

Galvanische Trennung

- Minus-Batteriespannung hat Verbindung mit Geräte GND
- Gehäuse und Kühlblock sind galvanisch getrennt von allen elektrischen Teilen
- die Luft- und Kriechstrecken entsprechen VDE

Verwendet werden:

- FET-Leistungshalbleiter
- großzügig dimensioniert
- nur handelsübliche Bauteile im Industrie-Standard
- SMD-Bestückung
- 7 Segment Leuchtdioden-Anzeige

Version: 2023 / V1 Seite: 5 BAMOBIL-D3.3

Eigenschaften:

- ✓ Batterie oder Gleichspannungsanschluss 24 V= bis 48 V (24 V= bis 120 V=)
- ✓ Unabhängiger Hilfsspannungsanschluss 24 V=
- ✓ Digitale Schnittstellen RS232, CAN-BUS (weitere Optionen)
- ✓ 2 Analoge Eingänge, programmierbare Differenzeingänge
- ✓ 4 Digitale Ein-Ausgänge, programmierbar, Opto-Entkoppelt
- ✓ Sollwertrampen linear, nicht-linear (S-Funktion)
- ✓ Freigabe- und Endschalterlogik
- ✓ BTB-Betriebsbereit, Solid State Relais Kontakt
- ✓ Lage- (Position), Drehzahl- und Drehmomentregelung
- ✓ Resolver- oder Encoder-Inkrementalgeber TTL, SINCOS 1Vss, Rotorlage +bl Tacho
- ✓ Encoderausgang oder 2. Encodereingang
- ✓ Statische und dynamische Stromgrenze
- ✓ Einheitliche volldigitale Regeleinheit
- ✓ Schutzabschaltung bei Überspannung, Unterspannung und Übertemperatur vom Motor
- ✓ Eigensicheres kurzschlussfestes Leistungsteil
- ✓ Prozessorunabhängige Hardwareabschaltung bei Kurzschluss, Erdschluss, Überspannung und Übertemperatur von Verstärker.

Version: 2023 / V1 Seite: 6 BAMOBIL-D3.3

1.6 Sicherheitsinformationen

Elektronische Geräte sind grundsätzlich nicht ausfallsicher!

Achtung Hochspannung

DC 160 V =

Schockgefahr!
Lebensgefahr!
Zwischenkreis-Entladezeit >4 min.

Dieses MANUAL muss vor der Installation oder Inbetriebnahme sorgfältig durch qualifiziertes Fachpersonal gelesen und verstanden werden. Das Wissen und die Kenntnis über das Gerät und im Besonderen über die Sicherheitshinweise müssen allen mit der Anwendung beschäftigten Personen zugänglich sein.

Bei Unklarheiten, sowie bei weiteren in der Dokumentation nicht oder nicht ausführlich genug beschriebenen Funktionen, ist der Hersteller oder Händler zu kontaktieren.

Falsche Installation kann zur Zerstörung der Geräte führen!

Falsche Programmierung kann gefährliche Bewegungen auslösen!

Bestimmungsgemäße Anwendungen:

Die Geräte der Serie **BAMOBIL** sind elektrische Betriebsmittel der Leistungselektronik für die Regelung des Energieflusses.

Sie sind zur Regelung von EC-Synchron-Motoren- und AC-Asynchron-Motoren-Fahrzeugen, Maschinenoder Anlagen, im industriellen Einsatz bestimmt.

Beim Einsatz in Wohngebieten sind zusätzliche EMV-Maßnahmen notwendig.

Abweichende Anwendungen bedürfen der Freigabe durch den Hersteller.

Der Anwender muss eine Gefahrenanalyse seines Endproduktes erstellen.

Schutzart IP20 (Version BAMOBIL-x-IM für Schutzart IP65))

Anschluss nur an Batterien. Bei Spannungen >60 V besonders beachten:

Betrieb nur bei geschlossenem oder gesichertem Schaltschrank erlaubt! Steuer- und Leistungsanschlüsse können zu Spannungen führen, ohne dass der Antrieb arbeitet! Zwischenkreis-Entladezeit ist größer als 4 Minuten! Vor Demontage Spannung messen.

Version: 2023 / V1 Seite: 7 BAMOBIL-D3.3

Der Anwender muss eine Gefahrenanalyse für seine Maschine, sein Fahrzeug oder seine Anlage erstellen.

Der Anwender muss sicherstellen:

- das nach einem Ausfall des Gerätes
- bei Fehlbedienung,
- bei Ausfall der Regel- und Steuereinheit usw.

der Antrieb in einen sicheren Betriebszustand geführt wird.

Fahrzeuge, Maschinen und Anlagen sind außerdem mit geräteunabhängigen Überwachungs- und Sicherheitseinrichtungen zu versehen. Es müssen geeignete Maßnahmen getroffen werden, damit durch unzulässige Bewegungen keine Gefahr für Menschen und Sachen entstehen!

Im Betrieb muss der Schaltschrank geschlossen und die Schutzsysteme müssen aktiv sein.

Bei geöffnetem Schaltschrank und/oder deaktivierten Schutzsystemen muss der Anwender sicherstellen, dass nur qualifiziertes Fachpersonal Zugang zu den Geräten hat.

Montagearbeiten

- nur im gesicherten spannungslosen Zustand
- nur von geschultem Fachpersonal

Installationsarbeiten

- nur im gesicherten spannungslosen Zustand
- nur von geschultem Elektro-Fachpersonal
- Sicherheitsvorschriften beachten

Einstell- und Programmierarbeiten

- nur von qualifiziertem Fachpersonal mit Kenntnissen in
- elektronischen Antrieben und
- Software
- Programmierhinweise beachten
- Sicherheitsvorschriften beachten

Version: 2023 / V1 Seite: 8 BAMOBIL-D3.3

1.7 Inbetriebnahme

Bei Einbau in Fahrzeuge, Maschinen und Anlagen ist die Aufnahme des bestimmungsgemäßen Betriebes des Gerätes solange untersagt, bis festgestellt wurde, dass die Maschine, die Anlage oder das Fahrzeug den Bestimmungen der EG-Maschinenrichtlinien 2006/42/E, der EMV-Richtlinie 2004/108/EG entspricht.

Die EG-Richtlinie 2004/108/EG mit den EMV-Normen EN61000-2 und EN61000-4 wird unter den im Kapitel EMV-Hinweise vorgegebenen Installations- und Prüfbedingungen eingehalten.

Beim Einsatz in Wohngebieten sind zusätzliche EMV-Maßnahmen notwendig.

Eine Herstellererklärung kann angefordert werden.

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Herstellers der Anlage oder Maschine.

Version: 2023 / V1 Seite: 9 BAMOBIL-D3.3

1.8 Details der Sicherheitshinweise

Maschinenrichtlinie

Der Maschinen oder Anlagenhersteller muss eine Gefahrenanalyse für sein Produkt erstellen. Er muss sicherstellen dass keine unvorhersehbaren Bewegungen zu Personen oder Sachschäden führen können.

Qualifiziertes Personal

Hardware

Qualifiziertes Fachpersonal zeichnet sich durch eine Ausbildung und Schulung für den Einsatz elektronischer Antriebstechnik aus. Es kennt die Normen und Unfallverhütungsvorschriften der Antriebstechnik und kann den Einsatz beurteilen. Mögliche Gefahren werden erkannt. Die örtlichen Vorschriften (IEC, VDE, VGB) sind dem Fachpersonal bekannt und werden bei den Arbeiten berücksichtigt.

Software

Qualifiziertes Fachpersonal für die Software muss geschult sein für die sichere Programmierung der Geräte in den Maschinen und Anlagen. Falsch Parametrierung kann zu unerlaubten Bewegungen führen. Die Parametereinstellungen sind gegen Fehlbedienung zu prüfen. Sorgfältige Abnahmetests sind, mit einem 4 Augenprinzip, durchzuführen

Arbeitsumgebung

Falsche Handhabung der Geräte kann zu Sach- oder Personenschäden führen.

Betrieb der Geräte nur bei geschlossenem oder gesichertem Schaltschrank!

Ausnahmen sind nur bei der ersten Inbetriebnahme oder bei Schaltschrankreparaturen durch Qualifiziertes Fachpersonal erlaubt.

Geräteabdeckungen dürfen nicht entfernt werden.

Arbeiten an elektrischen Anschlüssen nur im spannungsfreien und gegen Einschalten gesicherten Schaltschrank.

Die Spannungen und Restspannungen (Zwischenkreis) müssen vor den Arbeiten am Gerät gemessen werden. Maximal zulässige Spannung <42 V.

Es können hohe Temperaturen > 70 °C auftreten.

Die Arbeitsumgebungen können für Träger von elektronischen medizinischen Hilfsmitteln (z.B. Herzschrittmacher) gefährlich sein. Ein genügender Abstand zu diesen elektrischen Teilen ist einzuhalten.

Beanspruchung

Beim Transport und Lagerung sind die vorgeschriebenen klimatischen Bedingungen einzuhalten. Die Geräte dürfen keine mechanischen Beschädigungen aufweisen. Verbogene Gehäuseteile können die

Isolierstrecken beschädigen. Beschädigte Geräte niemals einbauen!

Die Geräte enthalten Bauelementen welche durch elektrostatische Entladungen beschädigt werden können. Die allgemeinen Empfehlungen für den Umgang mit ESDS-Bauteilen müssen beachtet werden. Besonders zu beachten sind hochisolierende Kunststofffolien und Kunstfasern.

Für den Betrieb ist sicherzustellen dass die Umweltbedingungen im Schaltschrank eingehalten werden. Dies gilt besonders für die nicht zugelassene Betauung der Geräte.

1.9 Bestimmungsgemäße Verwendung

Die Geräte sind zur Regelung von EC-Synchron-Motoren, AC-Asynchron-Motoren oder DC-Gleichstrom-Motoren in Fahrzeugen, Maschinen oder Anlagen bestimmt. Abweichende Anwendungen bedürfen der Freigabe durch den Hersteller. Die Geräte-Schutzart ist IP20.

Version: 2023 / V1 Seite: 10 BAMOBIL-D3.3

Der Einbau ist bei Spannungen >60 V nur in Schaltschränke oder schaltschrankähnliche Maschinenrahmen zugelassen. Der Einsatzort ist die Industrieumgebung. Beim Einsatz in Wohngebieten sind zusätzliche EMV-Maßnahmen notwendig.

Der Anwender muss eine Gefahrenanalyse seines Endproduktes erstellen.

Nur für den Anschluss an einer Batterie mit batterieseitiger Ladestrombegrenzung zugelassen. Bei Spannung >60 V sind Schutzabdeckungen und Isolationswächter einzusetzen. Es ist zu beachten dass der Hilfsspannungsanschluss und die Gerätemasse mit dem Minuspotential der Batteriespannung verbunden sind. Der CAN-BUS ist potentialgetrennt.

Der Anwender muss sicherstellen, dass in der gesamten Steuerverdrahtung die Normen eingehalten werden.

Bei am Gerät angeschlossenen Komponenten ohne potentialgetrennte Ein-/Ausgänge muss auf den Potentialausgleich geachtet werden (Ausgleichsanschluss GND). Die Ausgleichsströme können Bauteile zerstören.

Bei Isolationsmessungen in der Anwendung müssen die Geräte abgeklemmt oder die Leistungsanschlüsse untereinander und die Steuerungsanschlüsse untereinander gebrückt werden.

Bei Nichtbeachtung können im Gerät Halbleiter zerstört werden.

Repetierende Erd- und Kurzschlüsse unterhalb der Kurzschluss-Ansprechschwelle können zur Beschädigung der Endstufen führen (bedingt Kurzschlussfest nach EN50178).

Unzulässige Anwendungen

- lebenserhaltenden medizinischen Geräte oder Maschinen
- an Gleichstromnetzen ohne Überspannungs-Schutzschaltungen
- auf Schiffen
- in explosionsgefährdeten Umgebungen
- in Umgebungen mit ätzenden Dämpfen

Version: 2023 / V1 Seite: 11 BAMOBIL-D3.3

1.10 Vorschriften und Richtlinien

Die Geräte und die dazugehörenden Komponenten sind nach den örtlichen gesetzlichen und technischen Vorschriften zu montieren und anzuschließen:

EG-Richtlinie	2004/108/EG, 2006/95/EG, 2006/42/EG, 2002/96/EG			
EG-Normen	EN60204-1, EN292, EN 50178, EN60439-1, EN61800-3, ECE-R100			
Intern. Normen	ISO 6469, ISO 26262, ISO 16750, ISO 20653, ISO 12100			
IEC/UL	IEC 61508, IEC364, IEC 664, UL508C, UL840			
VDE-Vorschriften und	VDE 100, VDE 110, VDE 160			
TÜV-Vorschriften				
Vorschriften der	VGB4			
Berufsgenossenschaft				

Im Gerät berücksichtigte EU-Normen und Vorschriften

Norm	Erklärung	Ausgabe
EN 60146-1,-2	Halbleiter-Stromrichter	2010
EN 61800-1,-2,-3	Drehzahlveränderbare elektrische Antriebe	2010
EN 60664-1	Isolationskoordinaten Niederspannung	2012
EN 61010	Sicherheitsbestimmungen Regelgeräte	2011
EN 61800-5-1	Elektrische Leistungsantriebssysteme	2010
EN 61508-5	Funktionale Sicherheit elektrischer, elektronischer Systeme	2011
EN 60068-1,-2	Umgebungseinflüsse	2011
ISO 20653	Schutzart elektrische Ausrüstung von Fahrzeugen	
ECE-R100	Bedingungen batteriebetriebene Elektrofahrzeuge	
UL 508 C	UL-Vorschrift Stromrichter	2002
UL 840	UL-Vorschrift Luft und Kriechstrecken	2005

Vom Anwender zu beachtende EU-Normen und Vorschriften

Norm	Erklärung	Ausgabe
EN 60204	Sicherheit und elektrische Ausrüstung von Maschinen	2011
EN 50178	Ausrüstung von Starkstromanlagen	1998
EN 61800-3	Drehzahlveränderbare elektrische Antriebe -EMV	2010
EN 60439	Niederspannungs-Schaltgerätekombinationen	2011
EN 1175-1	Sicherheit von elektrischen Flurförderzeugen	2011
ISO 6469	Elektrische Straßenfahrzeuge	2009
ISO 26262	Funktionale Sicherheit elektrischer Straßenfahrzeuge	2011
ISO 16750	Elektrische Komponenten Fahrzeuge	2010
ISO 12100	Sicherheit von Maschinen	2011
ISO 13849	Sicherheit von Maschinen und Steuerungen	2011
IEC 364 Schutz gegen elektrischen Schlag		2010
IEC 664	Isolationskoordinaten Niederspannung	2011

Version: 2023 / V1 Seite: 12 BAMOBIL-D3.3

1.11 Risiken

Der Hersteller ist bestrebt durch konstruktive, elektrische- und softwareseitige Maßnahmen die vom Gerät ausgehenden Restrisiken soweit als möglich zu verringern.

Aus der Antriebstechnik sind folgende bekannte Restrisiken bei der Risikobetrachtung von Maschinen, Fahrzeugen und Anlagen zu berücksichtigen.

Unzulässige Bewegungen

verursacht durch:

- den Ausfall von Sicherheitsüberwachungen oder abgeschaltete Sicherheitsüberwachungen bei Inbetriebnahme oder Reparatur
- Softwarefehler in vorgelagerten Steuerungen, Fehler in Bussystemen
- Nicht überwachte Hardware und Softwarefehler in der Aktorik und den Verbindungskabel
- Vertauschter Regelsinn
- Fehler bei Parametrierung und Verdrahtung
- Begrenzte Reaktionszeit der Regeleigenschaften. Rampen, Grenzen
- Betrieb außerhalb der Spezifikationen
- Elektromagnetische Störungen
- Elektrostatische Störungen, Blitzeinschlag
- Bauelementeausfall
- Fehler in den Bremsen

Gefährliche Temperaturen

verursacht durch:

- Fehler bei der Installation
- Fehler an Anschlüssen, schlechte Kontakte, Alterung
- Fehler bei der elektrischen Absicherung, falsche Sicherungstypen
- Betrieb außerhalb der Spezifikationen
- Witterungseinflüsse, Blitzeinschlag
- Bauelementeausfall

Gefährliche Spannungen

verursacht durch:

- Fehlerhafte Erdung von Gerät oder Motor
- Fehler an Anschlüssen, schlechte Kontakte, Alterung
- Fehler in der Potentialtrennung, Bauelementeausfall
- Leitende Verschmutzung, Betauung

Gefährliche Felder

Die Geräte, das induktive und kapazitive Zubehör, sowie die Leistungsverkabelung können starke elektrische und elektromagnetische erzeugen. Diese können für Träger von elektronischen medizinischen Hilfsmitteln (z.B. Herzschrittmacher) gefährlich sein. Ein genügender Abstand diesen elektrischen Teilen ist einzuhalten.

Felder

711

Version: 2023 / V1 Seite: 13 BAMOBIL-D3.3

1.12 Technische Daten

Ausführung für Batteriespannung bis 48 V=

Leistungsspannung – Anschluss	24 V= bis 48 V=		
	Batteriespannung bei Bestellung angeben!		
Hilfsspannung - Anschluss	24 V= ± 10 % / 2 Restwelligkeit <10 %		
	A Selbstheilende Sicherung		

Daten BAMOBIL D3-xx	Dim.	80	120	250	450	
Anschlussspannung	V=			24 bis 48		
Ausgangsspannung max.	V~eff		3 x	14 bis, 3 x 3	33	
Dauerstrom	A _{eff}	40	60	125	225	
Spitzenstrom max.	A _{lo}	80	120	250	450	
Verlustleistung max.	W	200	300	600	1200	
Taktfrequenz	kHz	8				
Überspannung-Schaltwelle	V=		Programm	nierbar bis r	max. 68 V	
Eingangssicherung	Α	80	160	250	500A	
Zwischenkreis-Kapazität	μF	18800	28200	28200	28200	
Gewicht	Kg	2.2	2.3	3.6	3.7	
Abmessungen HxBxT	mm		2	44x194x90		
Baugröße		2	2	2	2	

Steuersignale		V	Α	Funktion	Anschluß
Analoge Eingänge		± 10	0.005	Differenzeingang	X1
Digitale Eingänge EIN		10-30	0.010	Logik L / O	V1
	AUS	<6	0	Logik I / O X1	
Digitale Ausgänge		+24	1	Transistor – Ausgang	X1
		+24	1	Open Emitter	
Resolver, TTL, SINCOS				Differenzeingang	X7
2. Encoder Eingang		>3.6 V		Optoentkoppelt	X7
Encoder Ausgang		>4.7 V		Optoentkoppelt	X8
CAN-Schnittstelle				Kommunikation I / O	Х9
RS232-Schnittstelle				Kommunikation I / O	X10

Version: 2023 / V1 Seite: 14 BAMOBIL-D3.3

Umgebungsbedingungen					
Schutzart	IP20				
Normen	EN60204, , EN61800, IEC60146				
Betriebs-Temperaturbereich	-10 bis +45 °C				
Erweiterter Betriebs-TempBereich	+45 °C bis +60 °C Leistungsreduzierung 2 % / °C				
Lagerung, Transport	-30 °C bis +80 °C , EN60721				
Aufstellhöhe	≤ 1000m ü.NN 100 %,				
	>1000m Leistungsreduzierung 2 %/100 m				
Kühlung	Mit Zusatzkühler				
Einbaulage	beliebig				
Verschmutzung	Verschmutzungsgrad 2 nach EN 61800-5-1				
Schwingung	10 Hz bis 58 Hz Ampl. 0,075 mm (IEC 60068-2-3)				
	58 Hz bis 200 Hz				
Schock	15 g für 11 ms				
Umweltbedingungen	Nicht zulässig:				
	Betauung, Eisbildung, Ölnebel, Salznebel, Wasser				
Feuchte	Klasse 3K3 Luftfeuchtigkeit <85 % keine Betauung!				

Programmierung	Ausführung	Software-Version
BAMOBIL-xx-RS	Resolver	
BAMOBIL-xx-IN	Encoder-TTL	
BAMOBIL-xx-SC	Encoder-SINCOS 1Vss	
BAMOBIL-xx-BL	Rotorlage + bl-Tacho	

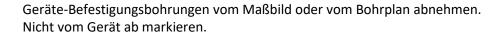
Achtung:

Leistungs-Anschlusskabel vom BAMOBIL zur Batterie möglichst kurz. Längere Leitungen führen aufgrund der Leitungsimpedanz zu dynamischen Spannungseinbrüchen. Diese belasten die eingebauten Elkos und verkürzen die Lebensdauer.

Version: 2023 / V1 Seite: 15 BAMOBIL-D3.3

2 Mechanische Installation

2.1 Wichtige Hinweise


Gerät auf mechanische Beschädigung überprüfen. Nur einwandfreie Geräte einbauen.

Montage nur im spannungslosen Zustand. Batterie-Pluspol und Minuspol abklemmen, DC-Netz trennen. Montage nur durch geschultes Fachpersonal.

Die Einbaulage ist bei Geräten mit Grundplatte und bei Geräten mit Zusatzkühler (Luft mit Lüfter, Flüssigkeit) beliebig.

Bei Geräten mit Zusatzkühler ohne Lüfter, senkrechte Einbaulage. Bei waagrechtem Einbau Leistungsreduzierung beachten.

Auf Abluft-Freiraum achten (min. 100 mm). Auf ausreichende Belüftung achten. Bei zu geringer Wärmeabfuhr schaltet das Gerät über seine thermische Überwachung ab.

Filter und Drossel räumlich nahe am Gerät montieren.

Leitungs-Schirme flächig mit der Montagefläche kontaktieren. Leistungskabel (Batterie- und Motorkabel) getrennt von den Signalleitungen verlegen. Minimalen Kabelquerschnitt beachten.

Sichere Masseverbindung vom Gehäuse zur Masse-Ebene (Fahrzeug-Masse, Schaltschrank-Masse).
Schirmlose Kabelenden möglichst kurz.
Kabelschuh 10 mm.
Rüttelsichere Verschraubungen verwenden.

Achtung: Bei Leistungsanschluss und Hilfsspannungsanschluss von der

Batterie unbedingt beachten.

Minus Leistungsspannung = Minus Hilfsspannung Interne Verbindung wird bei der Verpolung der Hilfsspannung zerstört.

Achtung: Bei gemeinsamen Null der Leistungsspannung (-UB) und der

Hilfsspannung (GND24) vom Batterie-Minuspol muss der Minus-UB Anschluss (XB:5) und der GND24-Anschluß (X1:3) direkt am BAMOBIL mit einem Kabel 2.5 mm² gebrückt

werden!

Version: 2023 / V1 Seite: 16 BAMOBIL-D3.3

2.2 Maßbild BAMOBIL D3

Abbildung 3-1

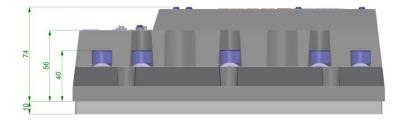


Abbildung 3-2

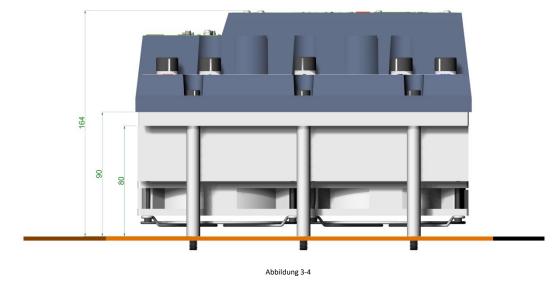
Einbautiefe ohne Stecker: BAMOBIL bis 120 A = 85 mm, BAMOBIL ab 150 A = 95 mm Befestigungsschrauben: BAMOBIL bis 120 = M5x20 / BAMOBIL ≤ 150 = M5x30

Die Kühlleistung der Bodenplatte (ohne Zusatzkühler) montiert auf der Schaltschrank-Rückwand (4 mm Stahl blank) entspricht bei 10 mm Stärke einem Dauerstrom von 35A (S1-Betrieb) und bei 20 mm Stärke einem Dauerstrom von 50 A.

Bei einem Strom größer als 50Aeff (bei Aussetzbetrieb S2, S3) ist ein Zusatzkühler oder eine wärmeableitende Montagefläche notwendig.

Anschluss-Schrauben **M10** x 16 maximal zugelassenes Anzugsdrehmoment 12 Nm

Version: 2023 / V1 Seite: 17 BAMOBIL-D3.3



2.3 Maßbild mit Zusatzkühler (optional)

Schalttafel - Montage

(optional):

Befestigungsbohrmaße wie beim Basis-Gerät. Befestigungs-Schrauben M5 x 110 mm Distanzrohr 80 mm, Ø innen >5,5 außen 10 mm Ø.

Version: 2023 / V1 Seite: 18 BAMOBIL-D3.3

2.4 Montage / Durchsteck-Montage

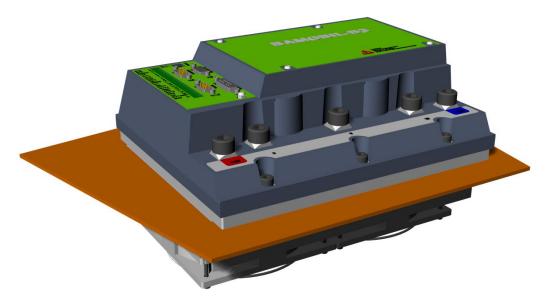


Abbildung 3-7

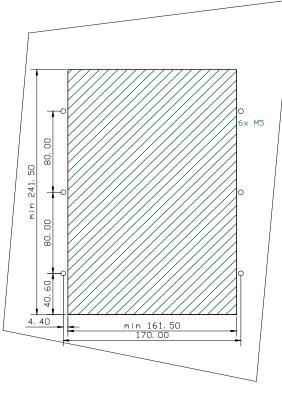


Abbildung 3-6

Schalttafel – Durchbruch

Abbildung 3-5

Befestigungsschraube M5 x 30

Version: 2023 / V1 Seite: 19 BAMOBIL-D3.3

3 Elektrische Installationen

3.1 Wichtige Hinweise

Die Anschlusshinweise sind in ihrer Zuordnung der Anschlüsse zu den Stecker-Nummern oder Klemmennummern verbindlich!

Alle weiteren Hinweise hierzu sind unverbindlich. Die Eingangs- und Ausgangsleitungen können unter Berücksichtigung der elektrischen Vorschriften und Richtlinien verändert und ergänzt werden.

Die zu beachtenden Vorschriften sind

- Anschluss- und Betriebshinweise
- Örtliche Vorschriften
- EG-Vorschriften wie EG-Maschinenrichtlinie 2006/42/EG
- Fahrzeug-Vorschriften ECE-R100, ISO 6469, ISO 26262
- VDE, TÜV und Berufsgenossenschaft-Bestimmungen

Elektrische Installation nur im spannungslosen Zustand.

Auf sichere Freischaltung achten.

- Kurzschlussbügel einlegen
- Warnschilder anbringen

Installation nur durch elektrotechnisch geschultes Personal

Anschlusswerte mit den Typenschildangaben vergleichen.

Auf richtige Absicherung der Einspeisung der Hilfsspannung achten.

Leistungskabel und Steuerleitungen räumlich getrennt verlegen.

 $Schirmanschl{\ddot{u}} is se \ und \ Erdungsmaßnahmen \ nach \ EMV-Richtlinien \ ausf{\ddot{u}} hren.$

Richtige Leitungsquerschnitte verwenden.

Achtung: Schlechte oder unterdimensionierte Kabelverbindungen zwischen Batterie und

Gerät können zu einer Beschädigung des Gerätes führen! (Bremsenergie)

Achtung: Leistungs-Anschlusskabel vom BAMOBIL zur Batterie möglichst kurz.

Längere Leitungen führen aufgrund der Leitungsimpedanz zu dynamischen Spannungseinbrüchen. Diese belasten die eingebauten Elkos und verkürzen die

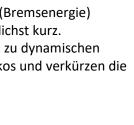
Lebensdauer.

Achtung: Bei Leistungsanschluss und Hilfsspannungsanschluss von

der Batterie unbedingt beachten.

Minus Leistungsspannung = Minus Hilfsspannung

Interne Verbindung wird bei Verpolung der


Hilfsspannung zerstört.

Achtung: Bei gemeinsamen Null der Leistungsspannung (-UB) und

der Hilfsspannung (GND24) vom Batterie-Minuspol muss der Minus-UB Anschluß (XB:5) und der GND24-Anschluß

(X1:3) direkt am BAMOBIL mit einem Kabel 2.5 mm²

gebrückt werden!

Version: 2023 / V1 Seite: 20 BAMOBIL-D3.3

Elektrische Installationen

Leerseite – drucktechnisch bedingt!!!!

Version: 2023 / V1 Seite: 21 BAMOBIL-D3.3

3.2 Blockschaltbilder

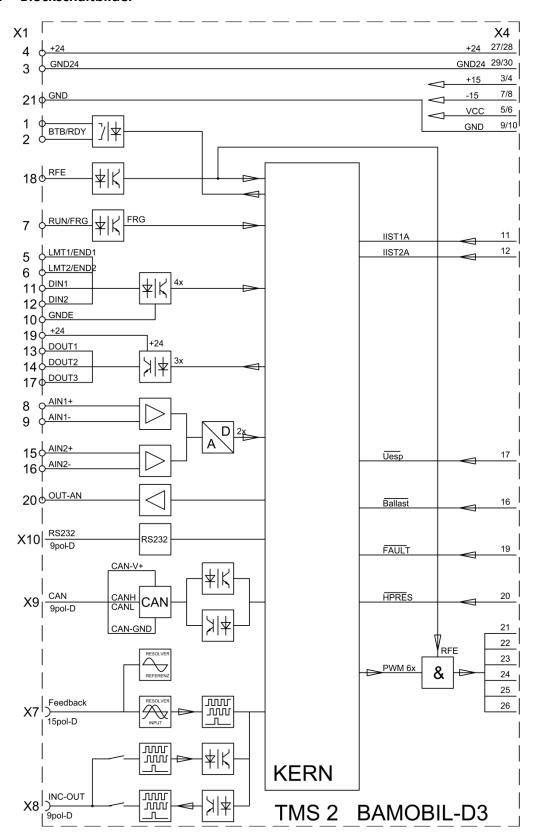


Abbildung 4-1: TMS2-DStecker-Blockbild-1

Version: 2023 / V1 Seite: 22 BAMOBIL-D3.3

Blockschaltbild

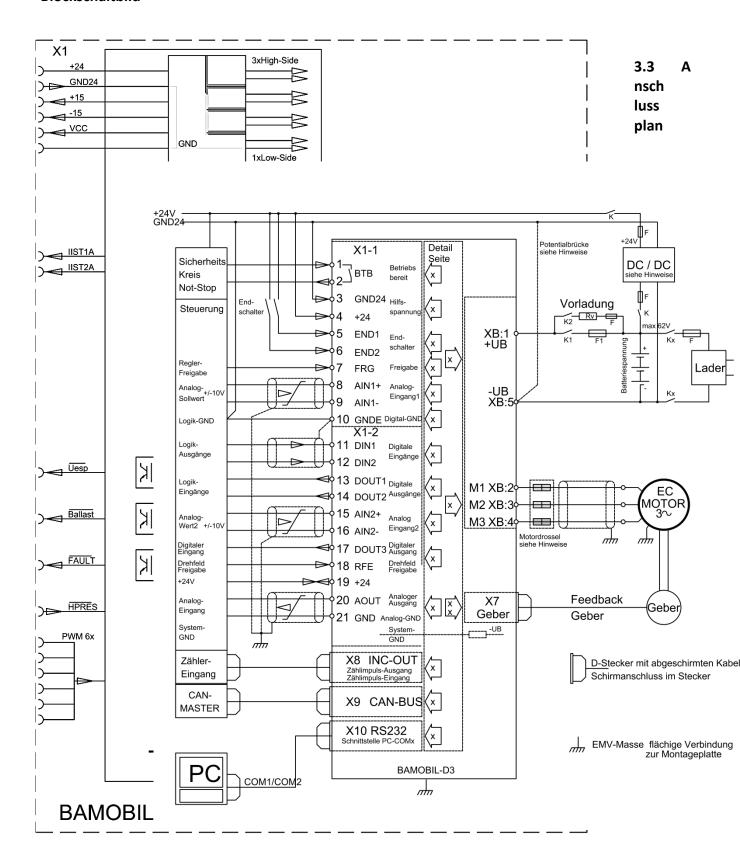


Abbildung 4-2. Bamobil-D3-LT-block-2

Abbildung 4-3 Bamobil-D3-Anschlussplan-4

Version: 2023 / V1 Seite: 23 BAMOBIL-D3.3

3.4 EMV

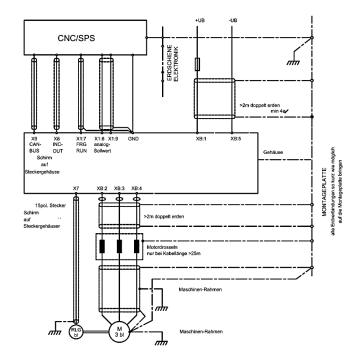


Abbildung 4-4 BAMOBIL-D-3-3-emv

Die Geräte entsprechen der EG-Richtlinie 2004/108/EG in den Normen EN61800-3 unter folgenden Installations- und Prüfbedingungen.

Montage:

Gerät auf blanker Montageplatte Aluminium 500 x 500 x 5 mm leitend montiert. Montageplatte über 10 mm² mit –UB verbunden. Motorgehäuse über 10 mm² mit –UB verbunden. Gehäuse mit Montageplatte (Masse) verbunden.

Steueranschlüsse:

Signalleitungen abgeschirmt, Analogsignal-Leitungen verdrillt und abgeschirmt. Schirm flächiger Kontakt auf Montageplatte (Masse).

Batterieanschluss:

48V Gleichspannung

Anschluss Motor:

Motorleitung abgeschirmt, flächiger Kontakt auf Montageplatte (Masse).

Bei Einbau in Maschinen und Anlagen ist die Aufnahme des bestimmungsgemäßen Betriebes des Gerätes solange untersagt, bis festgestellt wurde, dass die Maschine oder Anlage den Bestimmungen der EG-Maschinenrichtlinie 2006/42/EG und der EMV-Richtlinie 2004/108/EG entspricht. Bei Fahrzeugen ECE-R83, ECE-R100.

Eine Herstellererklärung kann angefordert werden.

Version: 2023 / V1 Seite: 24 BAMOBIL-D3.3

3.5 Steckerübersicht

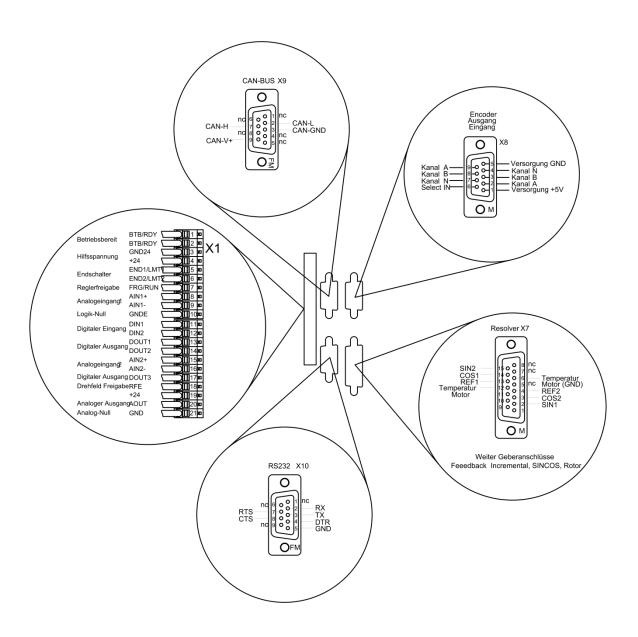


Abbildung 4-5 Bamobil-D3-steckerübersicht

Version: 2023 / V1 Seite: 25 BAMOBIL-D3.3

3.6 Batterieanschluss

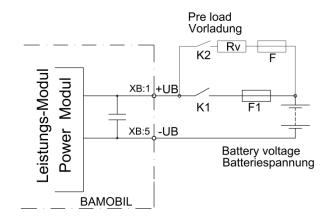


Abbildung 4-6 Bamobil D3-batterie-1

Vorladeschaltung verwenden.

Bei direktem Einschalten von K1 kann der Ladestrom bis zu 5 kA hoch sein.

Zwischenkreis – Kapazität : Siehe technische Daten

Vorwiderstand RV ca. $10~\Omega~10~W$ Ladestrom über K2 <16~A Ladezeit max. 1~Sek.

Schaltverzögerung von K1 mit Zeitrelais (2 Sekunden nach K2) oder mit Zwischenkreisüberwachung

Achtung:

Das Hauptschütz (K1) darf nur bei gesperrtem BAMOBIL (Freigabe X1:7 RUN/FRG = 0 V) geschaltet werden! Freigabe-Signal über K1 Hilfskontakt verriegeln.

Einschaltfolge: Hilfsspannung ein, (Sollwert 0),

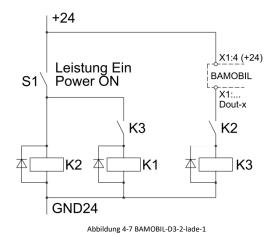
Ladeschaltung ein (K2)

nach Ladezeit (7*C*R) Leistungsspannung ein (K1),

minimal 2 Sek. später Freigabe ein.

Ausschaltfolge: (Sollwert 0), Freigabe aus, minimal 2 Sek. Später Leistungsspannung aus, Hilffspannung aus.

BTB/RDY Kontakt immer in den Sicherheitskreis einfügen! Bei einem Fehler muss der Batterieanschluss von der Batterie getrennt werden. (K1 öffnen)


Brandgefahr durch geräteinternen Lichtbogen!

Version: 2023 / V1 Seite: 26 BAMOBIL-D3.3

Prinzipschaltung Vorladung

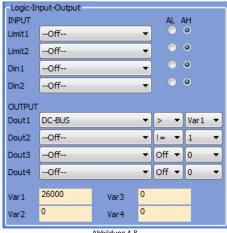


Abbildung 4-8

Programmierbeispiel:

Der Ausgang Dout1 schaltet das Relais K3 wenn die Zwischenkreisspannung DC-BUS (I_o/u voltage) größer ist als die Variable 1.

Hinweis:

Parameter DC-BUS min auf Batterie-Mindestspannung (zugelassene Entladungsspannung) programmieren. (100 % entsprechen 48 V)

Achtung

Maximale Anschußspannung (62 V=, 160 V=) auch kurzzeitig nicht überschreiten.

Zerstörungsgefahr!!!

F1 = Schmelzsicherung

Der Leistungsanschluss hat keinen Verpolschutz

Bei verpoltem Anschluss kann das Gerät zerstört werden!

Туре	Batterie-Anschluss- Bolzen 24,48 V= Schraube M8x16	Anschluss Querschnitt		Sicherung A	
80	Anzugsmoment	16	4	80	
120	<12 Nm	35	2	160	
250	XB1 (+UB=)	70	00	250	
450	XB5 (-UB=)	185	350	500	

Batterie-Anschluss < 2 m 2 bis 10 m Anschluss stärker Ab 10 m Zusatzkapazität einsetzen!

Version: 2023 / V1 Seite: 27 BAMOBIL-D3.3

Hilfsspannungsanschluss

Netzpotentialfreie Hilfs-Gleichspannung 24 V= +/- 10 % / 2 A Die Hilfsspannung hat -galvanische Verbindung zur Logikspannung

- galvanische Verbindung zur Leistungsspannung
- interne selbstheilende Sicherung
- EMV-Filter
- Externe Sicherung nur für Leitungsschutz

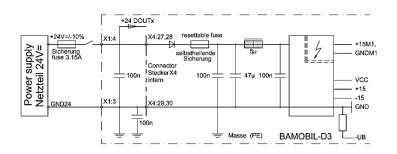


Abbildung 4-10 BAMOBIL-Hilfsspannung-4

Eingangsspannung	24 V DC X1:4

GND24 X1:3

Restwelligkeit 10 % Einschaltstrom 2 A Nominalstrom 0.8 A

Achtung:

Bei gemeinsamen Null der Leistungsspannung (-UB) und der Hilfsspannung (GND24) vom Batterie-Minuspol muss der Minus-UB Anschluss (XB:5) und der GND24-Anschluss (X1:3) direkt am BAMOBIL mit einem Kabel 2.5 mm² gebrückt werden.

Hinweis: Hilfsspannung nur auf stabile 24V Spannungsquelle schalten (Batterie oder

Netzteil).

Achtung: Zum internen Versorgungstrom (0.8 A) muss noch der Summenstrom der

Ausgänge (DOUT) vom 24 V Netzteil geliefert werden.

Achtung: Bei Hilfsspannung kleiner 20 V, auch kurzzeitige

Spannungsaussetzer, schaltet das interne Netzteil ab.

Daten im RAM-Speicher werden gelöscht.
Drehzahl und Positions-Sollwerte werden auf 0
gesetzt, Kalibrierungsdaten sind verloren.

Meldung OK im Status ist dunkel.

Achtung: Firmware download nur bei abgeschalteter

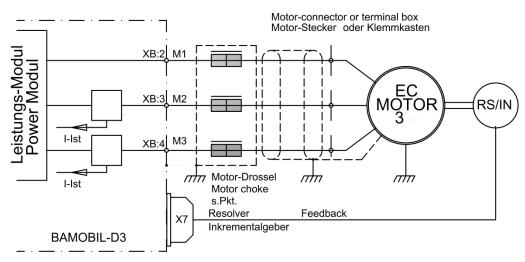
Leistungsspannung.

Hilfsspannung und / oder Leistungsspannung nur schalten bei gesperrtem BAMOBIL. Freigabe – Eingang X 1:7 = Null

Version: 2023 / V1 Seite: 28 BAMOBIL-D3.3

Abbildu

ng 4-11 Bamobil -D3motor-3


Ans chl

ussf olg

е

3.7 Motor Leistungsanschluss

Nur vom Hersteller freigegebene elektronisch kommutierte Synchronmotoren (bürstenlose Gleichstrommotoren, EC-Motoren) mit Resolver oder Inkrementalgeber verwenden. (Motorspezifische Anschluss- und Parametrier-Vorschriften).

Kabelbezeichnung M2 Motorkabel M1 M3 Motorphase U ٧ W 3 Adern einfach geschirmt für 200 V= **Anschlussbolzen** XB:2 XB:3 XB:4 Schirmkapazität 150 pF/m Minimalquerschnitt s. Tabelle Nur eine richtige Anschlussfolge möglich!

Kabelquerschnitt minimal

Type BAMOBIL D3-x	-80	-120	-150	-250	-450
Querschnitt mm²	6	10	16	25	95
AWG	10	6	4	2	0000

Motordrossel

Nur nötig ab einer Schirmkapazität von >5 nF. / ca. 25 m Motorkabel.

Ferritringe

Bei HF-Störkopplung auf Sensorsysteme, Ferritringe über die Motorleitung schieben.

Schirmanschluss

Flächiger Anschluss am Schaltschrank-Eingang

Flächiger oder möglichst kurzer Anschluss auf der Motorseite.

3.8 Digitaler Eingang

6 Optokoppler-Eingänge

_			· · · · · · · · · · · · · · · · · · ·	Eingangs-Spannung	
1	Digital	e Eingänge		EIN-Pegel	+10 bis +30
- [X1:5	Endschalter1	END1/LMT1	S .	W
	X1:6	Endschalter2	END2/LMT2		V
- 1	X1:7	Freigabe	FRG/RUN	AUS-Pegel	<+6 V
	V1.11	Digitalor Eingangs	DINI		•

Version: 2023 / V1 Seite: 29 BAMOBIL-D3.3

Elektrische Installationen

Abbildung 4-12 TMS-D-Stecker-DIN-D-Stecker

Eingangs-Strom Max. 7,5 mA

Nominal- +24V/6mA

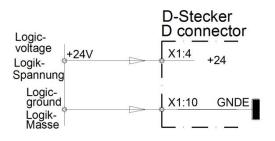
Spannung/Strom

Bezugs-Masse GNDE (X1:10)

Der Freigabe-Eingang (FRG/RUN) und der Eingang für die Drehfeld-Freigabe (RFE) sind fest zugeordnet und können nicht programmiert werden.

Ohne Freigabe (FRG/RUN ist der Servo elektronisch gesperrt (keine PWM-Impulse).

Ohne Drehfeld-Freigabe RFE ist das Drehfeld der Endstufe zusätzlich elektronisch gesperrt (zweiter Sperrkanal).


Der Antrieb ist momentenfrei (kein Haltemoment).

Die weiteren 4 digitalen Eingänge sind frei programmierbar.

Die Eingänge LMT1 (X1:5) und LMT2 (X1:6) sind bevorzugt als Endschalter-Eingänge zu verwenden.

Eingang	Anschluss	Funktion	Status	Parameter
FRG/RUN	X1:7	Freigabe/Nable	fest	
RFE	X1:18	Drehfeld/Nable	fest	
END1/LMT1	X1:5	Endschalter 1/Dig. Eingang	programmierbar	
END2/LMT2	X1:6	Endschalter 2/Dig. Eingang		
DIN1	X1:11	Digitaler Eingang1		
DIN2	X1:12	Digitaler Eingang2		

Externe Spannungsversorgung für Ein- und Ausgänge

+24 V für Logik und Hilfsspannung Summenstrom aller Ausgänge beachten

GNDE Logik-Masse

Abbildung 4-13 Steuersignale-TMS-2-D-Stecker/ED-Hilfsspannung-logic

3.9 Sicherheits-Eingang RFE (Drehfeld – Freigabe)

Achtung:

Bei abgeschaltetem Eingang der Freigabe- oder der Drehfeld-Freigabe ist der Antrieb momentenfrei. Ohne mechanische Bremse oder Sperre kann der Antrieb durchfallen oder sich bewegen.

Die Motorleitungen sind nicht spannungsfrei. Nur das Drehfeld ist gesperrt. Bei Arbeiten am Motor oder Servo muss der Servoverstärker vom Netz getrennt.

Version: 2023 / V1 Seite: 30 BAMOBIL-D3.3

Elektrische Installationen

Betrieb mit RFE - Eingang

Zweikanalige Freigabe-Sperre über ein Sicherheits-Schaltgerät. Freigabe-Eingang FRG/RUN plus Drehfeld-Freigabe-Eingang RFE

Einschalten

Sicherheitsgerät Kontakte geschlossen Freigabe FRG/RUN 0.5 Sek. nach RFE

Sicherheits-Abschaltung Sicherheitsgerät Kontakte geöffnet Kein FRG/RUN Signal sperrt im ersten Sperrkanal die PWM-Impulse im Prozessor.

Fehlendes RFE Signal sperrt die PWM-Impulse in der Treiberstufe. (Zweiter Sperrkanal nach dem Prozessor).

Wiedereinschalten Sicherheitsgerät entriegeln. Sicherheitsgerät Kontakte geschlossen. Erst nach erneuter Freigabe FRG/RUN zeitlich nach der Drehfeld-Freigabe kann der Motor sich bewegen.

Betrieb ohne RFE-Eingang

Der Eingang RFE muss mit der Logikspannung gebrückt werden

Ist die Logikspannung gleich Versorgungsspannung, so wird der RFE-Eingang mit +24 V gebrückt.

Die Freigabe FRG/RUN mindestens 0.5 sec. nach dem RFE-Signal.

CNC/SPS Surface Propose CNC/SPS Surface Propose Surfa

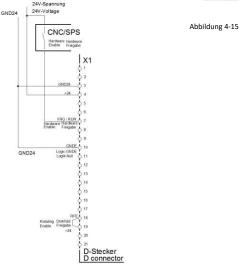


Abbildung 4-16

+24 V=

<1 V=

1 A

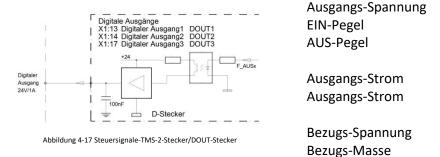
2 A

(X1:4)

(X1:10)

max.

nom


max.

+24

GNDE

3.10 Digitaler Ausgang (Open-Emitter)

Die Logik-Ausgänge 1 bis 3 sind für 24 V und 1 A ausgelegt. Kurzzeitig 2 A.

Ein Energie-Sparprogramm kann programmiert werden (getakteter Ausgang). Logikausgang 4 (24V, 3A) ist nur bei bestimmten Geräten am Leistungsteil verfügbar.

Version: 2023 / V1 Seite: 31 BAMOBIL-D3.3

Melde-Kontakt betriebsbereit (Solid Rate Relais) / Ready BTB / RDY

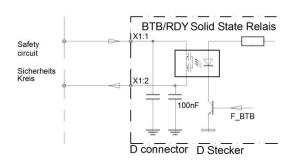


Abbildung 4-18 Steuersignale-TMS-2-D-Stecker/ED-BTB

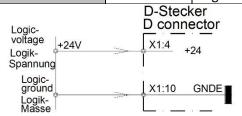
Kontakt für max. 48 V/0.2 A Kapazitive Last max. 1 myF Kontakt-Widerstand max. 2 Ohm Externe Sicherung 0,5Aff

Der Kontakt ist geschlossen

bei betriebsbereitem Gerät. Anzeige mit Status-7Segment-LED Bei Fehler ist der Kontakt

geöffnet.

BTB/RDY Kontakt immer in den
Sicherheitskreis einfügen!


Betriebsbereit fällt ab (LED rot, Relaiskontakt offen)

bei Fehlermeldungen

bei Unterspannung der Hilfsspannung (<20 V)

Die Meldung Unterspannung im Zwischenkreis kann programmiert werden (siehe Manual NDrive)

Ausgang	Anschluss	Funktion	Status	Parameter
BTB/RDY	X1:1, X1:2	Betriebsbereit	Fest / Relais	
DOUT1	X1:13	Digitaler Ausgang 1	Programmierbar	
DOUT2	X1:14	Digitaler Ausgang 2	Programmierbar	
DOUT3	X1:17	Digitaler Ausgang 3	Programmierbar	
DOUT4	Xx:Xx	Digitaler Ausgang 4	Programmierbar	

+ 24 V für Logik und Hilfsspannung Summenstrom aller Ausgänge beachten.

GNDE Logik-Masse

Abbildung 4-19 Steuersignale-TMS2-D-Stecker/ED-Hilfsspannung-Logic

3.11 Analoger Eingang +/- 10 V

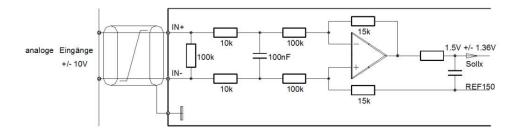


Abbildung 4-20 Analog-IN-D-Stecker

Eingang	Ausgang	Grund-Funktion	Spannung	Status	Parameter
AIN1+, AIN1-	X1:8, X1:9	Drehzahl-Sollwert	+/- 10V	prog.	
AIN2+, AIN2-	X1:15, X1:16	Stromgrenze	+/- 10V	prog.	

Version: 2023 / V1 Seite: 32 BAMOBIL-D3.3

Eigenschaften

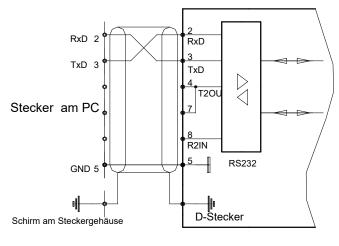
Differenzeingang	AIN1+ / AIN1-	AIN2+ / AIN2-	
Eingangswiderstand	70 k		
Grenzspannung	+/- 12 V		
Auflösung	11 Bit + V	orzeichen	

Die Motordrehrichtung kann durch Vertauschen der +/- Anschlüsse am Differenzeingang, durch einen Logik-Eingang oder durch Programmierung geändert werden.

Die Analog-Eingänge können verschiedenen Funktionen zugewiesen werden.

Analogeingang AIN1 kann bei digitalem Sollwert (RS232, x-BUS) als externe analoge Drehzahlgrenze und der Analogeingang AIN 2 kann als externe analoge Stromgrenze programmiert werden.

3.12 Analoger Ausgang +/- 10 V


Eingang	Ausgang	Grund-Funktion	Spannung	Status	Parameter
AOUT1	X2:20	Drehzahl-Sollwert	+/-10 V	prog.	
GND	X2:21	Signal-Null	0V	fest	

Version: 2023 / V1 Seite: 33 BAMOBIL-D3.3

3.13 Serielle Schnittstelle RS 232

Über die serielle PC-Schnittstelle RS232 wird der Verstärker BAMOBIL-D3 programmiert und für die Inbetriebnahme bedient. Die Software wird im Software-Manual DS NDrive beschrieben.

Die serielle Schnittstelle ist galvanisch mit dem Geräte – Null (GND / AGND) verbunden

Abbildung 4-21 TMS-2-D-Stecker/RS-232-

Verbindung zwischen BAMOBIL-D3 (D-Stecker X10) und der seriellen Schnittstelle (COMx) am PC nur mit einem Nullmodem-Kabel.

Nullmodem-Link-Kabel nicht verwenden!

Kabel nur im stromlosen Zustand stecken.

Die Schnittstelle ist fest auf **115200 Baud** eingestellt

Nullmodem-Verbindungs-Kabel Sicht auf Lötseite Schirm am Gehäuse Kabellänge max. 10m

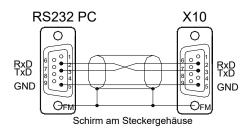
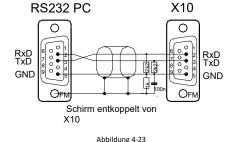



Abbildung 4-22

FM = Buchse

Bei starken Störungen auf der Schnittstelle sollte ein Leitungsfilter eingesetzt werden. Laptop mit USB-RS232 Konverter sind meist störempfindlich.

Version: 2023 / V1 Seite: 34 BAMOBIL-D3.3

3.14 CAN-BUS

Der CAN-BUS ist die digitale Verbindung zur CNC-Steuerung. Optimale Bedingungen mit CNC-Steuerungen und CAN-Komponenten von Firma LABOD Electronic oder CAN Open.

Programmierung und Bedienung mittels Bedienfeld mit CAN-BUS. Interface nach ISO 11898.

Einstellung und Programmierung siehe DS-CAN Manual.

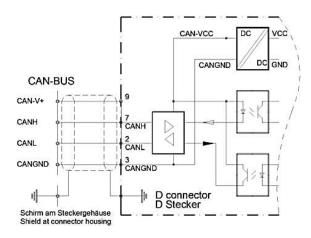


Abbildung 4-24 Steuersignale-TMS2-D-Stecker/ED-CAN-D-Stecker

Die BUS-Schnittstelle ist galvanisch getrennt von der internen Gerätespannung.

Die Spannungsversorgung erfolgt über einen internen isolierten DC-DC-Wandler oder über das Buskabel.

Can-V +9 bis 15 V=

CAN-BUS isoliert /
CAN Gnd auf gemeinsames
Potential bringen

CAN-BUS-Kabel

Abgeschirmte Busleitung mit geringer Schirmkapazität verwenden. Signal plus GND (+Versorgung).

 $\hbox{D-Stecker mit metallischem oder metallisiertem}\\$

Gehäuse. LiYCY 4x0.25+Schirm

Bezeichnung	Stecker-Nr.	Kabelfarbe
CAN-V+	9	braun
CAN-GND	3	weiß
CAN-H	7	grün
CAN-L	2	gelb

(Achtung: Farben können unterschiedlich sein)

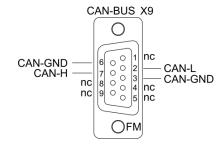
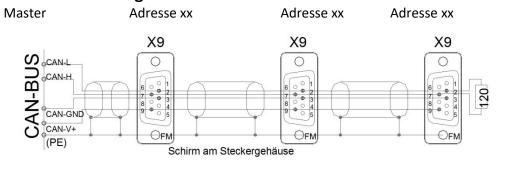



Abbildung 4-25 D-Stecker-can-1

CAN-BUS-Verbindung mit mehreren BAMOBIL-D3

120 Ohm zwischen CAN-H und CAN-L

am

Abschluss-Widerstand Ende der Busleitung >

Version: 2023 / V1 Seite: 35 BAMOBIL-D3.3

3.15 Resolveranschluss

Nur bei Bamobil-D3-RS

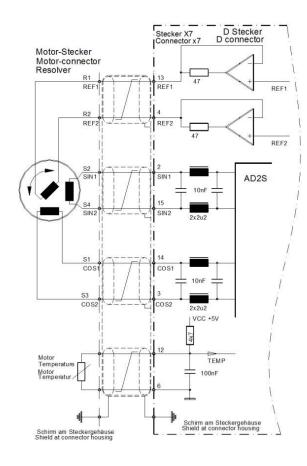
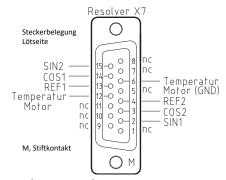


Abbildung 4-26 Steuersignale-TMS-2-D-Stecker/ED-Reso


Der Resolver ist ein Absolut-Mess-System für eine Motorumdrehung. Er ist robust und unempfindlich gegen hohe Motortemperaturen. Der Aufbau entspricht einem rotierenden Transformator. Der Rotor wird von der Referenz (10kHz) gespeist.

Der Stator liefert die von der Dreh-Frequenz modulierten Sinus- und Cosinus-Signale.

Im Servo-Verstärker werden die Amplituden dieser Signale ausgewertet und digitalisiert.

Die Auflösung wird selbsttätig optimal auf 10,12 oder 14 Bit eingestellt. Die maximale mögliche Drehzahl = 50 000 (10bit).

Die digitalisierten Signale werden für den Polradwinkel, die Positions-, die Geschwindigkeits-Regelung und für die Incrementausgabe verwendet.

Nur vom Hersteller zugelassene Motoren mit 2, 4, 6 oder 8 poligen Resolver einsetzen.

Motorspezifisches Anschlussblatt (RS) beachten!

Anschlussstecker X7 15 poliger D-Stecker

Anschlusskabel 4x2 Adern paarig verdrillt und geschirmt, plus Gesamtschirm.

Bei Schleppkette nur geeignetes Kabel verwenden

Kabellänge bei >25m nur hochwertige Resolverkabel mit verbesserten

Schirmeigenschaften einsetzen.

Schirmanschluss am Stecker X7 alle Schirme zusammenfassen und mit dem Gehäuse

kontaktieren

am Motorstecker Gesamtschirm mit dem Steckergehäuse

kontaktieren

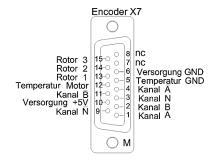
Einstell-Parameter siehe Software-Manual NDrive

3.16 Encoder TTL Anschluss

Nur für BAMOBIL-D3-xx-IN

Version: 2023 / V1 Seite: 36 BAMOBIL-D3.3

Elektrische Installationen


TTL-Incrementalgeber (Encoder) mit 2 Zählspuren und einer Nullspur plus 3 Rotorlagespuren. Zählspuren mit oder ohne Gegentakt-Ausgabe.

(Bei einfachem Anschluss A, B, N die negierten Eingänge nicht belegen).

Zähl-Eingang entspricht RS485 Maximale Zählfrequenz 500kHz

Der Incrementalgeber ist galvanisch mit dem Geräte-Null (GND) verbunden.

Versorgungsspannung 5V liefert der Servo.

M=Stiftkontakt / Steckerbelegung Lötseite

Abbildung 4-27 Steuersignale-TMS-2-D-Stecker/ED-IN-TTL-D-Stecker-2

Nur vom Hersteller zugelassene Motoren mit TTL-Incrementalgeber (Encoder) und Rotorlagespuren einsetzen. Motorspezifisches Anschlussblatt (IN) beachten!

Anschlussstecker X7 15 poliger D-Stecker

Anschlusskabel 10 Signaladern geschirmt Minimalquerschnitt 0,14 mm

2 Versorgungsadern Minimalquerschnitt 0,5 mm

Bei Schleppkette nur geeignetes Kabel verwenden.

Kabellänge bei >25m Querschnitt eine Stufe größer.

Schirmanschluss am Stecker X7 Schirm mit dem Steckergehäuse

kontaktieren.

am Motorstecker Schirm mit dem Steckergehäuse

kontaktieren.

Einstell-Parameter siehe Software-Manual NDrive

Version: 2023 / V1 Seite: 37 BAMOBIL-D3.3

Adapter für INC-Geber mit A,B,N Kanal ohne Gegentaktsignale

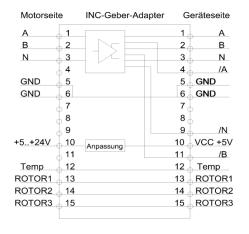
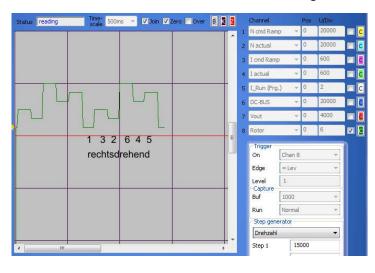


Abbildung 4-28


Der Geräte-Eingang für die inkrementellen Zählsignale benötigt die Gegentakt Zählimpulse zur sicheren Erkennung. Bei vielen einfachen Anwendungen werden Geber ohne Gegentaktsignale (z.B. Lagergeber)mit unterschiedlichen Versorgungsspannungen verwendet.

In diesen Anwendungen muss der INC-Adapter eingesetzt werden.

Der Adapter wandelt die Zählsignale A, B, N in die Gegentaktsignale A, /A, B, /B, N, /N um.

Bei von 5V abweichenden Versorgungsspannungen muss die Spannung, bei der Bestellung angegeben, und extern angeschlossen werden

Überprüfung auf richtigen Anschluss Rotorfolge

Die richtige Folge der Rotorsignale bei rechtsdrehendem Motor ist 1,3,2,6,4,5

Bei anderer Zahlenfolge ist der Geber-Anschluss der Rotorlagesignale Rotor1, Rotor2, Rotor3, (U, V, W) falsch

Anschlussplan benutzen!

Abbildung 4-29

Zahlenwert

Motor ohne Freigabe eine Umdrehung rechts drehen

Eine Motorumdrehung entspricht einem Positionswert von Num 65536 Bei einem andern Ergebnis ist die Eingabe von Feedback Inc-Mot (0xa6) falsch

Null-Winkel

Motor rechts und links drehend mit 10%-100% Drehzahl. Der Wert von zero-capture muss konstant bleiben.

Abbildung 4-30

3.17 SIN COS 1Vss Anschluss

Nur für BAMOBIL-D3-xx-SC

Version: 2023 / V1 Seite: 38 BAMOBIL-D3.3

Elektrische Installationen

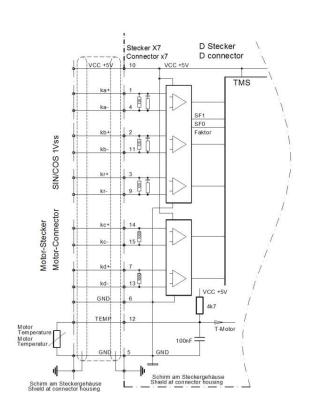
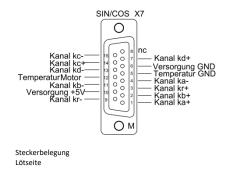


Abbildung 4-31 Steuersignale-TMS-D-Stecker/ED-SINCOS-D-Stecker


Inkrementalgeber (Encoder) mit 2 analogen sinusförmigen Zählspuren und einer Nullspur plus 2 Kommutierungsspuren. Differenzsignale 1Vss

Maximale Zählfrequenz 500 kHz

Der Inkrementalgeber ist galvanisch mit dem Geräte-Null (GND) verbunden.

Versorgungsspannung 5 V liefert der Servo.

Die Auflösung wird selbsttätig auf Optimum eingestellt.

Nur vom Hersteller zugelassene Motoren mit SIN / COS Geber (SC) einsetzen.

Motorspezifisches Anschlussblatt (SC) beachten!

Anschlussstecker X7 15poliger D-Stecker

Anschlusskabel 4xSignaladern drill-geschirmt Minimalquerschnitt 0,14 mm

2xSignaladern geschirmtMinimalquerschnitt 0,14 mm4xVersorgungsadern, TempMinimalquerschnitt 0,5 mm

Kabeltype (4x(2x0,14)+(4x0,14)C+4x0,5)C

bei Schleppkette nur geeignetes Kabel verwenden

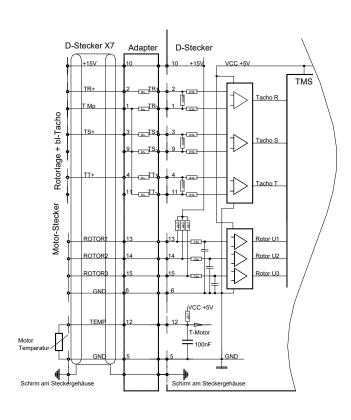
Kabellänge bei >25 m Querschnitt eine Stufe größer

Schirmanschluss am Stecker X7 Schirm mit dem

Steckergehäuse kontaktieren.

am Motorstecker Schirm mit dem

Steckergehäuse kontaktieren.


Einstell-Parameter siehe Software Manual NDrive

Version: 2023 / V1 Seite: 39 BAMOBIL-D3.3

3.18 Rotorlagegeber Anschluss mit bl-Tacho

Nur für BAMOBIL-D3-xx-bl

3 Rotorlagegeber-Signale (Hallsensoren) für die Kommutierung. Mit oder ohne bürstenlosem Tachogenerator.

Der Rotorlagegeber ist galvanisch mit dem Geräte-Null (GND) verbunden. Versorgungsspannung 15 V vom Servo.

Anpassadapter, wenn die Tachospannung bei Nenndrehzahl größer als 10 V~ ist.

Bei kleineren Tachospannungen X7: Pin 1,9 und 11 verbinden. Tacho-Mittelpunkt an X7:1 anschließen

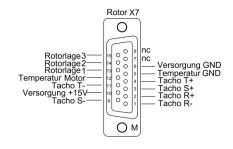


Abbildung 4-32 Steuersignale-TMS-2-D-Stecker/ED-BL-D-Stecker

Nur vom Hersteller zugelassene Motoren mit Rotorlagegeber (bl) einsetzen.

Motorspezifisches Anschlussblatt (bl) beachten! Anschlussstecker X7 15poliger D-Stecker

Anschlusskabel 12 x Signaladern, Versorgungsadern, Minimalquerschnitt 0,25 mm

Temp.

Kabeltype Bei Schleppkette nur geeignetes Kabel verwenden

Kabellänge bei >25m Querschnitt eine Stufe größer

Schirmanschluss am Stecker X7 Schirm mit dem Steckergehäuse

kontaktieren.

Steckerbelegung

Lötseite

am Motorstecker Schirm mit dem Steckergehäuse

kontaktieren.

Einstell-Parameter siehe Software Manual NDrive-xx

Version: 2023 / V1 Seite: 40 BAMOBIL-D3.3

3.19 X8 TTL-Encoder Ausgang oder Eingang (2)

Der D-Stecker X8 wird als Eingang oder Ausgang (Default) geschaltet.

Ausgang X8 Pin 6 nicht belegt oder mit GND gebrückt.

Eingang X8 Pin 6 mit +5 V gebrückt (X8:1)

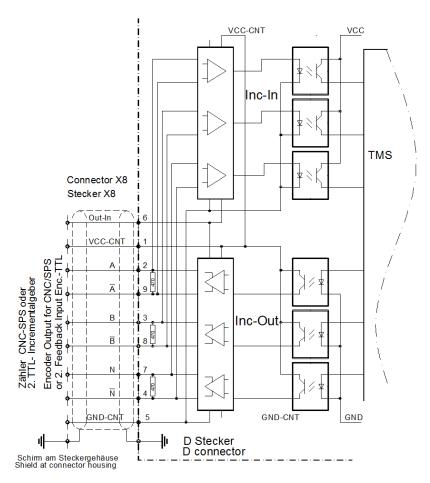


Abbildung 4-33 Steuersignale-TMS2-D-Stecker/ ED-X8-IN-OUT

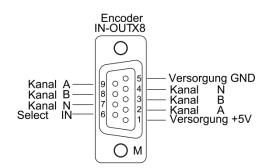


Abbildung 4-34 D-Stecker-encoount-1

9 pol D-Stecker (M, Stifte)

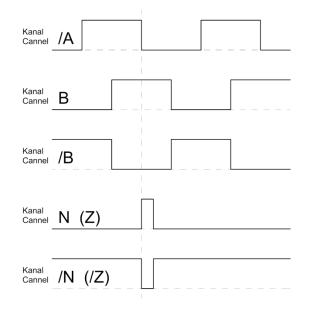
Steckerbelegung Lötseite

Achtung: X8 als Eingang

X8:6 (Select IN) mit X8:1 (+5 V) im D-Stecker verbinden

Version: 2023 / V1 Seite: 41 BAMOBIL-D3.3

Elektrische Installationen


3.20 X8 als TTL Encoder Ausgang

Die vom Motor gelieferten Gebersignale (Feedback) werden als TTL-Encodersignale für die CNC-Steuerung am D-Stecker X8 ausgegeben.

Der Encoder-Ausgang ist potentialgetrennt.
Die Spannungsversorgung erfolgt über das Geber-Kabel von der CNC/SPS-Steuerung.
Spannungsversorgung +5V +/- 0,2 V
Das Ausgangssignal entspricht RS485

Option: Interne Versorgung vom Servo (LBR1 + LBR2)

Die Auflösung ist bei RS und SC programmierbar. (Parameter 0xa4, Bit 1), bei IN gleich der Geber-Impulszahl.

Signalform (Motor rechtsdrehend)

Ausgangspegel low < 0.5 Vhigh >4,5 V Flankensteilheit $< 0.1 \mu s$ Nullimpuls min. $0,2 \mu s$ 200 kHz Ausgangsfrequenz max. Impulse / UPM bei RS, SC programmierbar bei IN Geber-Impulszahl

X8 als TTL - Encoder Eingang

Achtung: X8 Pin 6 (Select IN) muss mit X8 Pin 1 (+5 V) gebrückt sein!

Der Encoder-Eingang ist potentialgetrennt. Die Spannungsversorgung erfolgt über das Geber-Kabel Option: Interne Versorgung mit Servo Eingangssignale entsprechend RS485 Eingangsfrequenz max. 200 kHz

Option: Interne Versorgung vom Servo (LBR1 + LBR2)

Der Encoder Eingang kann auf unterschiedliche Funktionen programmiert werden. Siehe Software-Beschreibung DS-NDrive.

Version: 2023 / V1 Seite: 42 BAMOBIL-D3.3

3.21 Leuchtanzeigen-Status

Im Zustand "Normal" leuchtet die grüne 7 Segmentanzeige plus Dezimalpunkt als Betriebs-Anzeige (Status-Anzeige).

Beim Zustand "Fehler" leuchtet rote Fehler-LED und die 7 Segmentanzeige zeigt die Fehlernummer an.

Beim Zustand "Warnung" blinkt rote Fehler-LED und die 7 Segmentanzeige zeigt abwechselnd den Status und die Warnungs-Nummer an.

Status-Anzeige am Servo

Anzeige	Punkt/Strich	Zustand	Status bei NDrive
	blinkt	Prozessor aktiv	
	dunkel	Hilfsspannung fehlt oder geräteinterner Hardware- Fehler	
	blinkt	Startzustand nach Reset (Hilfsspannung 24 V Aus-Ein) Die erste Freigabe beendet den Blink-Zustand	OK = 0
	leuchtet	Antrieb freigegeben	OK = 1, ENA = 1
	dunkel	Antrieb gesperrt (nicht freigegeben)	OK = 1, ENA = 0
	leuchtet	Drehzahl gleich Null (Stillstandsmeldung)	N0 = 1
	leuchtet	Antrieb dreht rechts, N aktuell positiv	NO = 0
	leuchtet	Antrieb dreht links, N aktuell negativ	N0 = 0
	blinkt	Motorstrom auf Dauerstrom reduziert Icns	Icns = 1
H	leuchtet	Motorstrom bei maximaler Stromgrenze Imax	Icns = 0
	dunkel	Normalbetrieb, Motorstrom innerhalb der Stromgrenze	Icns = 0
	Leuchtet für 0,1 Sekunden	Ein neuer Befehl (Wert) wurde vom BUS oder RS232 empfangen.	

Beispiel: Motor rechtsdrehend

Punkt blinkt = Prozessor aktiv
Unterer Strich = Antrieb freigegeben
Rechter Strich = Motor dreht rechts

Version: 2023 / V1 Seite: 43 BAMOBIL-D3.3

3.22 Leuchtanzeigen Fehler

Die rote LED "FAULT" leuchtet und mit der grünen 7 -Segment-Anzeige wird die Fehlernummer angezeigt.

Fehlerliste

Anzeige	Fehleranzeige	Bedeutung		
am BAMOBIL	bei NDrive			
0	BADPARAS	Parameter beschädigt		
1	POWER FAULT	Endstufen-Fehler		
2	RFE FAULT	Sicherheitskreis fehlerhaft		
3	BUS TIMEOUT	Übertragungsfehler BUS		
4	FEEDBACK	Gebersignal fehlerhaft		
5	POWERVOLTAGE	Leistungsspannung fehlt		
6	MOTORTEMP	Motortemperatur zu hoch		
7	DEVICETEMP	Gerätetemperatur zu hoch		
8	OVERVOLTAGE	Überspannung >1.8 x UN		
9	I_PEAK	Überstrom 300 %		
Α	RACEAWAY	Durchdrehen (ohne Sollwert, falsche Richtung)		
В	USER	Benutzer – Fehlerauswahl		
С	12R	Überlast		
D	RESERVE			
E	ADC-INT	Strom Messfehler		
F (geräteabhängig)	BALLAST	Ballastschaltung überlastet		
Dezimalpunkt	Prozessor aktiv			
blinkt	r 102e3301 aktiv			
Dezimalpunkt dunkel	Hilfsspannung fehlt oder gerätinterne Hardware-Fehler			

Leuchtanzeigen am Servo:

Bei einem Fehler leuchtet die rote Leuchtdiode FAULT und die Fehlernummer wird angezeigt.

Der BTB-Kontakt wird geöffnet.

Die Software BTB-Meldung schaltet von 1 auf 0.

Die Statusmeldung Rdy wird dunkel.

Beim Abschalten der Freigabe (Enable) bleibt die Fehlermeldung erhalten.

Die Fehlermeldung wird gelöscht.

Beim Einschalten von Cancel errors durch einen digitalen Eingang oder mittels CAN BUS.

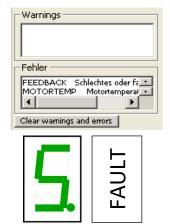


Abbildung 4-36 NDrive2-Bilder/7segmentF5

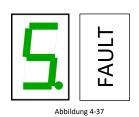
Achtung:

Beim Anlegen der 24V Hilfsspannung bei geschlossener Freigabe (FRG/RUN X1:7 aktiv) zeigt die rote Leuchtdiode einen Fehler. Es erfolgt keine Fehleranzeige in der 7-Segment Anzeige.

Version: 2023 / V1 Seite: 44 BAMOBIL-D3.3

3.23 Leuchtanzeigen Warnungen

Beim Zustand "Warnung" blinkt die rote Fehler-LED und die 7 Segmentanzeige zeigt abwechselnd den Status und die Warnungs-Nummer an.


Warnmeldungen

Anzeige	Fehleranzeige	Bedeutung	ID-Adresse
am Servo bei NDrive			
			0x8f
0	WARNING_0	Geräteerkennung inkonsistent	Bit 16
1	ILLEGAL STATUS	RUN Signal	Bit 17
2	WARNING-2	FE Signal inaktiv	Bit 18
3			Bit 19
4			Bit 20
5	POWERVOLTAGE	Leistungsspannung zu klein oder fehlt	Bit 21
6	MOTORTEMP	Motortemperatur >87 %	Bit 22
7	DEVICETEMP	Motortemperatur >87 %	Bit 23
8	OVERVOLTAGE	Überspannung >1.5 x UN	Bit 24
9	I_PEAK	Überstrom 200 %	Bit 25
Α			Bit 26
В			Bit 27
С	I2R	Überlast > 87 %	Bit 28
D			Bit 29
E			Bit 30
F (Geräteabhängig)	BALLAST	Ballastschaltung >87 % überlastet	Bit 31

Leuchtanzeigen am Servo

Beim Zustand "Warnung" blinkt die rote LED und die 7 Segmentanzeige zeigt abwechselnd die Nummer der Warnung (LED rot) und den Betriebs-Status an (LED dunkel).

Version: 2023 / V1 Seite: 45 BAMOBIL-D3.3

3.24 Messwerte

ab Firmware 378 **Zwischenkreis-Spannung (48 V)**

BAMOBIL D3-62	Zwischenkreis-	Parameter 0xeb	DC-BUS - %
	Spannung		
Maximale-Spannung	62 V	24775	150
Batterie-Spannung	48 V	19180	116
Überspannungs-Abschaltung	70 V	28771	170
Ladespannung	56 V	22377	136
Ohne Ladespannung	0 V	0	0
Normierung	1	399,59	2,42
DC-BUS	82 V	32767	200

Parameter 0xeb = 399,59 x Zwischenkreisspannung

Strom-Istwert

BAMOBIL-D3	I 100 %	Kalibrierung Nennstrom I-device			Spitzenstrom DC blockiert	
Maximalwert +/- 11Bit	mV	Num	Aeff	A=	Num	A=
x-80	560	450	40	56	650	80
x-100	700	560	50	60	800	100
x-120	840	670	60	84	970	120
x-250	874	700	125	175	1010	250
x-350	610	490	175	245	710	350
x-450	785	630	225	315	910	450

Die Grundeinstellungen sind im Parametersatz geschützt.

Version: 2023 / V1 Seite: 46 BAMOBIL-D3.3

3.25 Endstufen-Temperatur

IGBT-Modultemperatur	Analog-Spannung X4 Pin6	Parameter 0x4a
Maximal +80 °C	2,60	16820 (FW>400)

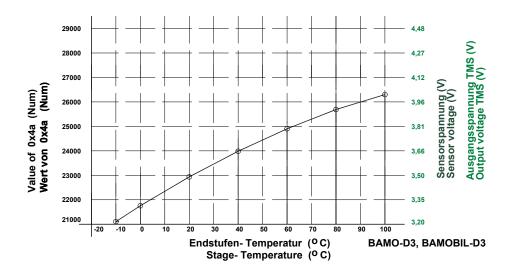
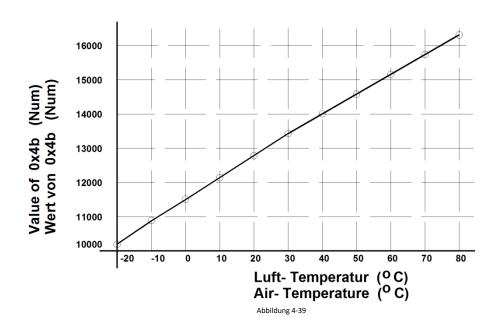



Abbildung 4-38

Bamobil-Bamo-Temperatur-IGBT-3

Luft-Temp-1

Version: 2023 / V1 Seite: 47 BAMOBIL-D3.3